Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346# cm (c1m1) # http://en.wikipedia.org/wiki/Wallpaper_group#Group_cm M := [ [1,2,4], [1,4,9], [2,3,5], [2,4,5], [3,5,6], [3,6,7], [4,5,7], [4,6,7], [4,6,9], [5,6,8], [5,7,8], [6,8,9] ]; G := Group( (1,2) ); iso := rec( 1 := G, 2 := G, 3 := G, 7 := G, 8 := G, 9 := G ); mu := []; dim := 3; # matrices = [ <A homalg internal 12 by 118 matrix>, <A homalg internal 118 by 568 matrix>, <A homalg internal 568 by 2965 matrix>, <A homalg internal 2965 by 17278 matrix> ] # factors = [ 9.8, 4.8, 5.2, 5.8 ] #cohomology over Z: #---------->>>> Z^(1 x 1) #---------->>>> Z^(1 x 1) #---------->>>> Z/< 2 > #---------->>>> Z/< 2 > #cohomology over GF(2): # 1: 12 x 118 matrix with rank 11 and kernel dimension 1. Time: 0.000 sec. # 2: 118 x 568 matrix with rank 105 and kernel dimension 13. Time: 0.004 sec. # 3: 568 x 2965 matrix with rank 461 and kernel dimension 107. Time: 0.124 sec. # 4: 2965 x 17278 matrix with rank 2502 and kernel dimension 463. Time: 2.961 sec. # 5: 17278 x 105211 matrix with rank 14774 and kernel dimension 2504. Time: 113.227 sec. # 6: 105211 x 659548 matrix with rank 90435 and kernel dimension 14776. Time: 4042.348 sec. # 7: 659548 x 4236040 matrix with rank 569111 and kernel dimension 90437. Time: 182594.984 sec. (50h, Mem: 2600MB ~ 2.5g) # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 2) # Cohomology dimension at degree 2: GF(2)^(1 x 2) # Cohomology dimension at degree 3: GF(2)^(1 x 2) # Cohomology dimension at degree 4: GF(2)^(1 x 2) # Cohomology dimension at degree 5: GF(2)^(1 x 2) # Cohomology dimension at degree 6: GF(2)^(1 x 2) #cohomology over Z/4Z: #---->>>> Z/4Z^(1 x 1) #---->>>> Z/4Z/< ZmodnZObj(2,4) > + Z/4Z^(1 x 1) #---->>>> Z/4Z/< ZmodnZObj(2,4) > + Z/4Z/< ZmodnZObj(2,4) > #---->>>> Z/4Z/< ZmodnZObj(2,4) > + Z/4Z/< ZmodnZObj(2,4) > #---->>>> Z/4Z/< ZmodnZObj(2,4) > + Z/4Z/< ZmodnZObj(2,4) > #cohomology over Z: Z, Z, [ Z/2Z ] # homology over Z: Z, Z + Z/2Z, [ Z/2Z ]