Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346# p2 (p211) # http://en.wikipedia.org/wiki/Wallpaper_group#Group_p2 M := [ [1,5,8], [1,8,9], [1,5,9], [2,6,9], [2,9,10], [2,6,10], [3,7,10], [3,8,10], [3,7,8], [4,6,7], [4,5,7], [4,5,6], [5,7,8], [8,9,10], [5,6,9], [6,7,10]]; G := Group( (1,2) ); iso := rec( 1 := G,2 := G,3 := G,4 := G ); mu:=[ [[5], [1,5], [1,5,8], [1,5,9], x -> (1,2) ], [[5], [1,5], [1,5,9], [1,5,8], x -> (1,2) ], [[6], [2,6], [2,6,9], [2,6,10], x -> (1,2) ], [[6], [2,6], [2,6,10], [2,6,9], x -> (1,2) ], [[7], [3,7], [3,7,10], [3,7,8], x -> (1,2) ], [[7], [3,7], [3,7,8], [3,7,10], x -> (1,2) ], [[6], [4,6], [4,6,7], [4,5,6], x -> (1,2) ], [[6], [4,6], [4,5,6], [4,6,7], x -> (1,2) ] ]; dim := 4; #matrix sizes: #[ <A homalg internal 16 by 126 matrix>, # <A homalg internal 126 by 420 matrix>, # <A homalg internal 420 by 1590 matrix>, # <A homalg internal 1590 by 7536 matrix>, # <A homalg internal 7536 by 37506 matrix>, # <A homalg internal 37506 by 187500 matrix> ] #factors: # [ 7.875,3.33333,3.78571,4.73962,4.97691,4.9992 ] #up to 4 works,cohomology: [0], [1], [2,2,2,0], [1], [2,2,2,2], [1],... # 1: 16 x 126 matrix with rank 15 and kernel dimension 1. Time: 0.000 sec. # 2: 126 x 420 matrix with rank 108 and kernel dimension 18. Time: 0.004 sec. # 3: 420 x 1590 matrix with rank 308 and kernel dimension 112. Time: 0.088 sec. # 4: 1590 x 7536 matrix with rank 1278 and kernel dimension 312. Time: 0.828 sec. # 5: 7536 x 37506 matrix with rank 6254 and kernel dimension 1282. Time: 18.589 sec. # 6: 37506 x 187500 matrix with rank 31248 and kernel dimension 6258. Time: 537.134 sec. # 7: 187500 x 937500 matrix with rank 156248 and kernel dimension 31252. # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 3) # Cohomology dimension at degree 2: GF(2)^(1 x 4) # Cohomology dimension at degree 3: GF(2)^(1 x 4) # Cohomology dimension at degree 4: GF(2)^(1 x 4) # Cohomology dimension at degree 5: GF(2)^(1 x 4) # Cohomology dimension at degree 6: GF(2)^(1 x 4) #cohomology over Z/4Z: #----->>> Z/4Z^(1 x 1) #----->>> Z/4Z/< ZmodnZObj(2,4) >^(1 x 3) #----->>> Z/4Z/< ZmodnZObj(2,4) >^(1 x 3) + Z/4Z^(1 x 1) #----->>> Z/4Z/< ZmodnZObj(2,4) >^(1 x 4) #----->>> Z/4Z/< ZmodnZObj(2,4) >^(1 x 4) #homology over Z/4Z: #----->>> Z/4Z^(1 x 1) #----->>> Z/4Z/< ZmodnZObj(2,4) >^(1 x 3) #----->>> Z/4Z/< ZmodnZObj(2,4) >^(1 x 3) + Z/4Z^(1 x 1) #----->>> Z/4Z/< ZmodnZObj(2,4) >^(1 x 4) #cohomology over Z: #----------------------------------------------->>>> Z^(1 x 1) #----------------------------------------------->>>> 0 #----------------------------------------------->>>> Z/< 2 > + Z/< 2 > + Z/< 2 > + Z^(1 x 1) #----------------------------------------------->>>> 0 #----------------------------------------------->>>> Z/< 2 > + Z/< 2 > + Z/< 2 > + Z/< 2 >