Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346# Demo for CIRCA lunch talk on May 8th, 2014 LoadPackage("scscp"); Read("liouville.g"); # Same functions called locally and remotely. Check that the result is the same LiouvilleFunction(1000); EvaluateBySCSCP("LiouvilleFunction",[1000],"localhost", 26133); PartialSummatoryLiouvilleFunction([1..1000]); EvaluateBySCSCP("PartialSummatoryLiouvilleFunction",[[1..1000]],"localhost", 26133); # Tell master which workers to use SCSCPservers:=List([26101..26148], i -> ["localhost",i]); # Setup for timing in microseconds Realtime:=function(t1,t2) return 1000000*(t2.tv_sec-t1.tv_sec)+t2.tv_usec-t1.tv_usec; end; # Sequential version using 'List' t1:=IO_gettimeofday(); Sum( List( [1..1000], LiouvilleFunction ) ); t2:=IO_gettimeofday(); seqtime:=Realtime(t1,t2); # Naive parallelisation is several thousand times slower! t1:=IO_gettimeofday(); Sum( ParListWithSCSCP( [1..1000], "LiouvilleFunction" ) ); t2:=IO_gettimeofday(); partime:=Realtime(t1,t2); Float(partime/seqtime); # This may take about two minutes t1:=IO_gettimeofday(); Sum( List( [1..10000000], LiouvilleFunction ) ); t2:=IO_gettimeofday(); seqtime:=Realtime(t1,t2); # Parallel version with chunks should demonstrate acceptable speedups t1:=IO_gettimeofday(); ParSummatoryLiouvilleFunction( 10000000, 100000); t2:=IO_gettimeofday(); partime:=Realtime(t1,t2); Float(seqtime/partime); # Now let's check that L(906180359)=+1, this may take about 20 minutes on 48 cores t1:=IO_gettimeofday(); ParSummatoryLiouvilleFunction( 906180359, 100000); t2:=IO_gettimeofday(); partime:=Realtime(t1,t2);