Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41834612[1X[5XSgpViz[105X[101X345[1XA [5XGAP[105X package for semigroup visualisation[101X678Version 0.999.191011Manuel Delgado1213José João Morais14151617Manuel Delgado18Email: [7Xmailto:[email protected][107X19Homepage: [7Xhttp://www.fc.up.pt/cmup/mdelgado[107X2021-------------------------------------------------------22[1XCopyright[101X23[33X[0;0Y© 2005 by Manuel Delgado and José João Morais[133X2425[33X[0;0Y[5XSgpViz[105X package is free software; you can redistribute it and/or modify it26under the terms of the GNU General Public License27([7Xhttp://www.fsf.org/licenses/gpl.html[107X) as published by the Free Software28Foundation; either version 2 of the License, or (at your option) any later29version. For details, see the file 'GPL' included in the package or see the30FSF's own site.[133X313233-------------------------------------------------------34[1XAcknowledgements[101X35[33X[0;0YThe first author acknowledges financial support of FCT, through the [13XCentro36de Matemática da Universidade do Porto[113X.[133X3738[33X[0;0YThe second author acknowledges financial support of FCT and the POCTI39program through a scholarship given by [13XCentro de Matemática da Universidade40do Porto[113X.[133X4142[33X[0;0YBoth authors acknowledge Jorge Almeida, Vítor H. Fernandes and Pedro Silva43for many helpful discussions and comments.[133X4445[33X[0;0Y[12XConcerning maintenance:[112X[133X4647[33X[0;0YThe maintainer wants to acknowledge partial support by:[133X4849[33X[0;0YFCT - Fundação para a Ciência e a Tecnologia under the project50PTDC/MAT/65481/2006[133X5152[33X[0;0Y[13XCentro de Matemática da Universidade do Porto[113X (CMUP), funded by the European53Regional Development Fund through the programme COMPETE and by the54Portuguese Government through the FCT project PEst-C/MAT/UI0144/2011.[133X5556[33X[0;0YCMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national57(MEC) and European structural funds through the programs FEDER, under the58partnership agreement PT2020.[133X5960[33X[0;0YFurthermore, the maintainer wants to thank the organisers of [10XGAPDays[110X in61their several editions, as well as several people (for advises, giving62feedback, etc). Among them I would like to refer: Max Horn, James Mitchel,63Jan Philipp Wächter, João Araújo, Alfredo Costa and Teresa Melo.[133X646566-------------------------------------------------------67[1XColophon[101X68[33X[0;0YThis manual describes the [5XGAP[105X package [5XSgpViz[105X, Version 0.999.1, for69visualising finite semigroups.[133X7071[33X[0;0YSince Version 0.998 (released in 2008), the package is maintained by the72first author.[133X7374[33X[0;0YThe present package is supersede by the [5XGAP[105X package [13Xsemigroups[113X, by James75Mitchel, in what concerns some aspects of semigroup visualisation. We76strongly recommend the usage of that package, unless you find useful77specific tools available in [5XSgpViz[105X but not in [13Xsemigroups[113X.[133X7879[33X[0;0YBug reports, suggestions and comments are, of course, welcome. Please use80the email address [7Xmailto:[email protected][107X to this effect.[133X8182[33X[0;0YIf you have benefited from the use of the [5XSgpViz[105X [5XGAP[105X package in your83research, please cite it in addition to [5XGAP[105X itself, following the scheme84proposed in [7Xhttp://www.gap-system.org/Contacts/cite.html[107X.[133X858687-------------------------------------------------------888990[1XContents (SgpViz)[101X91921 [33X[0;0YIntroduction[133X932 [33X[0;0YBasics[133X942.1 [33X[0;0YExamples[133X952.2 [33X[0;0YSome attributes[133X962.2-1 HasCommutingIdempotents972.2-2 IsInverseSemigroup982.3 [33X[0;0YSome basic functions[133X992.3-1 PartialTransformation1002.3-2 ReduceNumberOfGenerators1012.3-3 SemigroupFactorization1022.3-4 GrahamBlocks1032.4 [33X[0;0YCayley graphs[133X1042.4-1 RightCayleyGraphAsAutomaton1052.4-2 RightCayleyGraphMonoidAsAutomaton1063 [33X[0;0YDrawings of semigroups[133X1073.1 [33X[0;0YDrawing the D-class of an element of a semigroup[133X1083.1-1 DrawDClassOfElement1093.1-2 DotForDrawingDClassOfElement1103.2 [33X[0;0YDrawing the D-classes of a semigroup[133X1113.2-1 DrawDClasses1123.2-2 DotForDrawingDClasses1133.3 [33X[0;0YCayley graphs[133X1143.3-1 DrawRightCayleyGraph1153.3-2 DrawCayleyGraph1163.3-3 DotForDrawingRightCayleyGraph1173.4 [33X[0;0YSchützenberger graphs[133X1183.4-1 DrawSchutzenbergerGraphs1193.5 [33X[0;0YDrawings output formats[133X1203.5-1 DrawingsListOfExtraFormats1213.5-2 DrawingsExtraFormat1223.5-3 SetDrawingsExtraFormat1233.6 [33X[0;0YDrawings extra graph attributes[133X1243.6-1 DrawingsExtraGraphAttributes1253.6-2 SetDrawingsExtraGraphAttributes1263.6-3 ClearDrawingsExtraGraphAttributes1274 [33X[0;0YUser friendly ways to give semigroups and automata[133X1284.1 [33X[0;0YFinite automata[133X1294.1-1 XAutomaton1304.2 [33X[0;0YFinite semigroups[133X1314.2-1 XSemigroup1324.2-2 [33X[0;0YSemigroups given through generators and relations[133X1334.2-3 [33X[0;0YSemigroups given by partial transformations[133X1344.2-4 [33X[0;0YSyntatic semigroups[133X135136137[32X138139140