Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#SIXFORMAT GapDocGAP HELPBOOKINFOSIXTMP := rec( encoding := "UTF-8", bookname := "SgpViz", entries := [ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ], [ "Copyright", ".-1", [ 0, 0, 1 ], 23, 2, "copyright", "X81488B807F2A1CF1" ] , [ "Acknowledgements", ".-3", [ 0, 0, 3 ], 35, 2, "acknowledgements", "X82A988D47DFAFCFA" ], [ "Colophon", ".-2", [ 0, 0, 2 ], 68, 2, "colophon", "X7982162280BC7A61" ], [ "Table of Contents", ".-4", [ 0, 0, 4 ], 89, 3, "table of contents", "X8537FEB07AF2BEC8" ], [ "\033[1X\033[33X\033[0;-2YIntroduction\033[133X\033[101X", "1", [ 1, 0, 0 ], 1, 4, "introduction", "X7DFB63A97E67C0A1" ], [ "\033[1X\033[33X\033[0;-2YBasics\033[133X\033[101X", "2", [ 2, 0, 0 ], 1, 5, "basics", "X868F7BAB7AC2EEBC" ], [ "\033[1X\033[33X\033[0;-2YExamples\033[133X\033[101X", "2.1", [ 2, 1, 0 ], 8, 5, "examples", "X7A489A5D79DA9E5C" ], [ "\033[1X\033[33X\033[0;-2YSome attributes\033[133X\033[101X", "2.2", [ 2, 2, 0 ], 40, 5, "some attributes", "X85134313846D1A8A" ], [ "\033[1X\033[33X\033[0;-2YSome basic functions\033[133X\033[101X", "2.3", [ 2, 3, 0 ], 59, 6, "some basic functions", "X78CA2A0D869C51DC" ], [ "\033[1X\033[33X\033[0;-2YCayley graphs\033[133X\033[101X", "2.4", [ 2, 4, 0 ], 148, 7, "cayley graphs", "X789D5E5A8558AA07" ], [ "\033[1X\033[33X\033[0;-2YDrawings of semigroups\033[133X\033[101X", "3", [ 3, 0, 0 ], 1, 9, "drawings of semigroups", "X826F747F81441D2E" ], [ "\033[1X\033[33X\033[0;-2YDrawing the D-class of an element of a semigroup\\ 033[133X\033[101X", "3.1", [ 3, 1, 0 ], 9, 9, "drawing the d-class of an element of a semigroup", "X7F71117D7F0259B8" ], [ "\033[1X\033[33X\033[0;-2YDrawing the D-classes of a semigroup\033[133X\\ 033[101X", "3.2", [ 3, 2, 0 ], 114, 11, "drawing the d-classes of a semigroup" , "X81CCF2BB81C4DF6F" ], [ "\033[1X\033[33X\033[0;-2YCayley graphs\033[133X\033[101X", "3.3", [ 3, 3, 0 ], 172, 14, "cayley graphs", "X789D5E5A8558AA07" ], [ "\033[1X\033[33X\033[0;-2YSch\303\274tzenberger graphs\033[133X\033[101X", "3.4", [ 3, 4, 0 ], 199, 15, "scha\276tzenberger graphs", "X79B26A588771144F" ], [ "\033[1X\033[33X\033[0;-2YDrawings output formats\033[133X\033[101X", "3.5", [ 3, 5, 0 ], 210, 15, "drawings output formats", "X7F5419527FFCD1DF" ], [ "\033[1X\033[33X\033[0;-2YDrawings extra graph attributes\033[133X\033[101X\ ", "3.6", [ 3, 6, 0 ], 263, 16, "drawings extra graph attributes", "X795DD98D86A1A441" ], [ "\033[1X\033[33X\033[0;-2YUser friendly ways to give semigroups and automat\ a\033[133X\033[101X", "4", [ 4, 0, 0 ], 1, 18, "user friendly ways to give semigroups and automata", "X83D3B9D482790646" ], [ "\033[1X\033[33X\033[0;-2YFinite automata\033[133X\033[101X", "4.1", [ 4, 1, 0 ], 7, 18, "finite automata", "X811E5FC2849C5644" ], [ "\033[1X\033[33X\033[0;-2YFinite semigroups\033[133X\033[101X", "4.2", [ 4, 2, 0 ], 64, 20, "finite semigroups", "X836830E97ED27F7F" ], [ "\033[1X\033[33X\033[0;-2YSemigroups given through generators and relations\ \033[133X\033[101X", "4.2-2", [ 4, 2, 2 ], 87, 21, "semigroups given through generators and relations", "X83397F6B7B44CACD" ], [ "\033[1X\033[33X\033[0;-2YSemigroups given by partial transformations\033[1\ 33X\033[101X", "4.2-3", [ 4, 2, 3 ], 99, 24, "semigroups given by partial transformations", "X7FCC7AFB793048E2" ], [ "\033[1X\033[33X\033[0;-2YSyntatic semigroups\033[133X\033[101X", "4.2-4", [ 4, 2, 4 ], 105, 25, "syntatic semigroups", "X854F0DDF7D612393" ], [ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 27, "bibliography", "X7A6F98FD85F02BFE" ], [ "References", "bib", [ "Bib", 0, 0 ], 1, 27, "references", "X7A6F98FD85F02BFE" ], [ "Index", "ind", [ "Ind", 0, 0 ], 1, 28, "index", "X83A0356F839C696F" ], [ "License", ".-1", [ 0, 0, 1 ], 23, 2, "license", "X81488B807F2A1CF1" ], [ "\033[2XHasCommutingIdempotents\033[102X", "2.2-1", [ 2, 2, 1 ], 45, 6, "hascommutingidempotents", "X7F7FAED380682973" ], [ "\033[2XIsInverseSemigroup\033[102X", "2.2-2", [ 2, 2, 2 ], 51, 6, "isinversesemigroup", "X83F1529479D56665" ], [ "\033[2XPartialTransformation\033[102X", "2.3-1", [ 2, 3, 1 ], 62, 6, "partialtransformation", "X7A65787A83C0F8EF" ], [ "\033[2XReduceNumberOfGenerators\033[102X", "2.3-2", [ 2, 3, 2 ], 77, 6, "reducenumberofgenerators", "X7EEED52C7D38E1CA" ], [ "\033[2XSemigroupFactorization\033[102X", "2.3-3", [ 2, 3, 3 ], 84, 6, "semigroupfactorization", "X7BBEBEE885D05208" ], [ "\033[2XGrahamBlocks\033[102X", "2.3-4", [ 2, 3, 4 ], 104, 7, "grahamblocks", "X7FB7633483A45209" ], [ "\033[2XRightCayleyGraphAsAutomaton\033[102X", "2.4-1", [ 2, 4, 1 ], 151, 7, "rightcayleygraphasautomaton", "X822983CD7F01B5EA" ], [ "\033[2XRightCayleyGraphMonoidAsAutomaton\033[102X", "2.4-2", [ 2, 4, 2 ], 174, 8, "rightcayleygraphmonoidasautomaton", "X82F7D3E485D615D8" ], [ "\033[2XDrawDClassOfElement\033[102X", "3.1-1", [ 3, 1, 1 ], 12, 9, "drawdclassofelement", "X87448A11856B0F2D" ], [ "\033[2XDotForDrawingDClassOfElement\033[102X", "3.1-2", [ 3, 1, 2 ], 46, 10, "dotfordrawingdclassofelement", "X78DC47A785011D84" ], [ "\033[2XDrawDClasses\033[102X", "3.2-1", [ 3, 2, 1 ], 117, 11, "drawdclasses", "X7BDBEDA37ADCAADE" ], [ "\033[2XDotForDrawingDClasses\033[102X", "3.2-2", [ 3, 2, 2 ], 146, 13, "dotfordrawingdclasses", "X84B611718473E019" ], [ "\033[2XDrawRightCayleyGraph\033[102X", "3.3-1", [ 3, 3, 1 ], 175, 14, "drawrightcayleygraph", "X7EB36DB07C6F58A0" ], [ "\033[2XDrawCayleyGraph\033[102X", "3.3-2", [ 3, 3, 2 ], 181, 14, "drawcayleygraph", "X86798CC9823D1DB2" ], [ "\033[2XDotForDrawingRightCayleyGraph\033[102X", "3.3-3", [ 3, 3, 3 ], 192, 14, "dotfordrawingrightcayleygraph", "X8487357A85497320" ], [ "\033[2XDrawSchutzenbergerGraphs\033[102X", "3.4-1", [ 3, 4, 1 ], 202, 15, "drawschutzenbergergraphs", "X7B7B58B77EA25719" ], [ "\033[2XDrawingsListOfExtraFormats\033[102X", "3.5-1", [ 3, 5, 1 ], 218, 15, "drawingslistofextraformats", "X844AA65E815BCFDF" ], [ "\033[2XDrawingsExtraFormat\033[102X", "3.5-2", [ 3, 5, 2 ], 228, 15, "drawingsextraformat", "X7CE046CE786F76D5" ], [ "\033[2XSetDrawingsExtraFormat\033[102X", "3.5-3", [ 3, 5, 3 ], 242, 16, "setdrawingsextraformat", "X87B43746819C55F3" ], [ "\033[2XDrawingsExtraGraphAttributes\033[102X", "3.6-1", [ 3, 6, 1 ], 272, 16, "drawingsextragraphattributes", "X7A3895EB7C0573DD" ], [ "\033[2XSetDrawingsExtraGraphAttributes\033[102X", "3.6-2", [ 3, 6, 2 ], 284, 16, "setdrawingsextragraphattributes", "X7B652A9179C45291" ], [ "\033[2XClearDrawingsExtraGraphAttributes\033[102X", "3.6-3", [ 3, 6, 3 ], 333, 17, "cleardrawingsextragraphattributes", "X7B915CC480D0ABF0" ], [ "\033[2XXAutomaton\033[102X", "4.1-1", [ 4, 1, 1 ], 10, 18, "xautomaton", "X8470C731867684DF" ], [ "\033[2XXSemigroup\033[102X", "4.2-1", [ 4, 2, 1 ], 71, 21, "xsemigroup", "X7CFD37938771E821" ] ] );