<?xml version="1.0" encoding="UTF-8"?>
<Chapter Label="AffineVariety">
<Heading>Affine toric varieties</Heading>
<Section Label="AffineVariety:Category">
<Heading>Affine toric varieties: Category and Representations</Heading>
<#Include Label="IsAffineToricVariety">
</Section>
<Section Label="AffineVariety:Properties">
<Heading>Affine toric varieties: Properties</Heading>
Affine toric varieties have no additional properties. Remember that affine toric varieties are toric varieties,
so every property of a toric variety is a property of an affine toric variety.
</Section>
<Section Label="AffineVariety:Attributes">
<Heading>Affine toric varieties: Attributes</Heading>
<#Include Label="CoordinateRing">
<#Include Label="ListOfVariablesOfCoordinateRing">
<#Include Label="MorphismFromCoordinateRingToCoordinateRingOfTorus">
<#Include Label="ConeOfVariety">
</Section>
<Section Label="AffineVariety:Methods">
<Heading>Affine toric varieties: Methods</Heading>
<#Include Label="CoordinateRing2">
<#Include Label="ConeMethod">
</Section>
<Section Label="AffineVariety:Constructors">
<Heading>Affine toric varieties: Constructors</Heading>
The constructors are the same as for toric varieties. Calling them with a cone will
result in an affine variety.
</Section>
<Section Label="AffineVariety:Examples">
<Heading>Affine toric Varieties: Examples</Heading>
<#Include Label="AffineSpaceExample">
</Section>
</Chapter>