Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346% generated by GAPDoc2LaTeX from XML source (Frank Luebeck)1\documentclass[a4paper,11pt]{report}23\usepackage{a4wide}4\sloppy5\pagestyle{myheadings}6\usepackage{amssymb}7\usepackage[utf8]{inputenc}8\usepackage{makeidx}9\makeindex10\usepackage{color}11\definecolor{FireBrick}{rgb}{0.5812,0.0074,0.0083}12\definecolor{RoyalBlue}{rgb}{0.0236,0.0894,0.6179}13\definecolor{RoyalGreen}{rgb}{0.0236,0.6179,0.0894}14\definecolor{RoyalRed}{rgb}{0.6179,0.0236,0.0894}15\definecolor{LightBlue}{rgb}{0.8544,0.9511,1.0000}16\definecolor{Black}{rgb}{0.0,0.0,0.0}1718\definecolor{linkColor}{rgb}{0.0,0.0,0.554}19\definecolor{citeColor}{rgb}{0.0,0.0,0.554}20\definecolor{fileColor}{rgb}{0.0,0.0,0.554}21\definecolor{urlColor}{rgb}{0.0,0.0,0.554}22\definecolor{promptColor}{rgb}{0.0,0.0,0.589}23\definecolor{brkpromptColor}{rgb}{0.589,0.0,0.0}24\definecolor{gapinputColor}{rgb}{0.589,0.0,0.0}25\definecolor{gapoutputColor}{rgb}{0.0,0.0,0.0}2627%% for a long time these were red and blue by default,28%% now black, but keep variables to overwrite29\definecolor{FuncColor}{rgb}{0.0,0.0,0.0}30%% strange name because of pdflatex bug:31\definecolor{Chapter }{rgb}{0.0,0.0,0.0}32\definecolor{DarkOlive}{rgb}{0.1047,0.2412,0.0064}333435\usepackage{fancyvrb}3637\usepackage{mathptmx,helvet}38\usepackage[T1]{fontenc}39\usepackage{textcomp}404142\usepackage[43pdftex=true,44bookmarks=true,45a4paper=true,46pdftitle={Written with GAPDoc},47pdfcreator={LaTeX with hyperref package / GAPDoc},48colorlinks=true,49backref=page,50breaklinks=true,51linkcolor=linkColor,52citecolor=citeColor,53filecolor=fileColor,54urlcolor=urlColor,55pdfpagemode={UseNone},56]{hyperref}5758\newcommand{\maintitlesize}{\fontsize{50}{55}\selectfont}5960% write page numbers to a .pnr log file for online help61\newwrite\pagenrlog62\immediate\openout\pagenrlog =\jobname.pnr63\immediate\write\pagenrlog{PAGENRS := [}64\newcommand{\logpage}[1]{\protect\write\pagenrlog{#1, \thepage,}}65%% were never documented, give conflicts with some additional packages6667\newcommand{\GAP}{\textsf{GAP}}6869%% nicer description environments, allows long labels70\usepackage{enumitem}71\setdescription{style=nextline}7273%% depth of toc74\setcounter{tocdepth}{1}757677787980%% command for ColorPrompt style examples81\newcommand{\gapprompt}[1]{\color{promptColor}{\bfseries #1}}82\newcommand{\gapbrkprompt}[1]{\color{brkpromptColor}{\bfseries #1}}83\newcommand{\gapinput}[1]{\color{gapinputColor}{#1}}848586\begin{document}8788\logpage{[ 0, 0, 0 ]}89\begin{titlepage}90\mbox{}\vfill9192\begin{center}{\maintitlesize \textbf{\textsf{ToricVarieties}\mbox{}}}\\93\vfill9495\hypersetup{pdftitle=\textsf{ToricVarieties}}96\markright{\scriptsize \mbox{}\hfill \textsf{ToricVarieties} \hfill\mbox{}}97{\Huge \textbf{A \textsf{GAP} package for handling toric varieties.\mbox{}}}\\98\vfill99100{\Huge Version 2012.12.22\mbox{}}\\[1cm]101{October 2012\mbox{}}\\[1cm]102\mbox{}\\[2cm]103{\Large \textbf{Sebastian Gutsche\\104\mbox{}}}\\105\hypersetup{pdfauthor=Sebastian Gutsche\\106}107\mbox{}\\[2cm]108\begin{minipage}{12cm}\noindent109\\110\\111This manual is best viewed as an \textsc{HTML} document. An \textsc{offline} version should be included in the documentation subfolder of the package. \\112\\113\end{minipage}114115\end{center}\vfill116117\mbox{}\\118{\mbox{}\\119\small \noindent \textbf{Sebastian Gutsche\\120} Email: \href{mailto://sebastian.gutsche@rwth-aachen.de} {\texttt{sebastian.gutsche@rwth-aachen.de}}\\121Homepage: \href{http://wwwb.math.rwth-aachen.de/~gutsche} {\texttt{http://wwwb.math.rwth-aachen.de/\texttt{\symbol{126}}gutsche}}\\122Address: \begin{minipage}[t]{8cm}\noindent123Lehrstuhl B f{\"u}r Mathematik, RWTH Aachen, Templergraben 64, 52056 Aachen,124Germany \end{minipage}125}\\126\end{titlepage}127128\newpage\setcounter{page}{2}129{\small130\section*{Copyright}131\logpage{[ 0, 0, 1 ]}132{\copyright} 2011-2012 by Sebastian Gutsche133134This package may be distributed under the terms and conditions of the GNU135Public License Version 2. \mbox{}}\\[1cm]136{\small137\section*{Acknowledgements}138\logpage{[ 0, 0, 2 ]}139\mbox{}}\\[1cm]140\newpage141142\def\contentsname{Contents\logpage{[ 0, 0, 3 ]}}143144\tableofcontents145\newpage146147\index{\textsf{ToricVarieties}}148\chapter{\textcolor{Chapter }{Introduction}}\label{intro}149\logpage{[ 1, 0, 0 ]}150\hyperdef{L}{X7DFB63A97E67C0A1}{}151{152153\section{\textcolor{Chapter }{What is the goal of the \textsf{ToricVarieties} package?}}\label{WhyToricVarieties}154\logpage{[ 1, 1, 0 ]}155\hyperdef{L}{X82D29B587A1E08FF}{}156{157\textsf{ToricVarieties} provides data structures to handle toric varieties by their commutative158algebra structure and by their combinatorics. For combinatorics, it uses the \textsf{Convex} package. Its goal is to provide a suitable framework to work with toric159varieties. All combinatorial structures mentioned in this manual are the ones160from \textsf{Convex}. }161162}163164165\chapter{\textcolor{Chapter }{Installation of the \textsf{ToricVarieties} Package}}\label{install}166\logpage{[ 2, 0, 0 ]}167\hyperdef{L}{X7EC76C1D7F46724F}{}168{169To install this package just extract the package's archive file to the \textsf{GAP} \texttt{pkg} directory.170171By default the \textsf{ToricVarieties} package is not automatically loaded by \textsf{GAP} when it is installed. You must load the package with \\172\\173\texttt{LoadPackage}( "ToricVarieties" ); \\174\\175before its functions become available.176177Please, send me an e-mail if you have any questions, remarks, suggestions,178etc. concerning this package. Also, I would be pleased to hear about179applications of this package and about any suggestions for new methods to add180to the package. \\181\\182\\183Sebastian Gutsche }184185186\chapter{\textcolor{Chapter }{Toric varieties}}\label{Varieties}187\logpage{[ 3, 0, 0 ]}188\hyperdef{L}{X866558FA7BC3F2C8}{}189{190191\section{\textcolor{Chapter }{Toric variety: Category and Representations}}\label{ToricVariety:Category}192\logpage{[ 3, 1, 0 ]}193\hyperdef{L}{X8108B9978021989B}{}194{195196197\subsection{\textcolor{Chapter }{IsToricVariety}}198\logpage{[ 3, 1, 1 ]}\nobreak199\hyperdef{L}{X7A99B0697F11DEB1}{}200{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsToricVariety({\mdseries\slshape M})\index{IsToricVariety@\texttt{IsToricVariety}}201\label{IsToricVariety}202}\hfill{\scriptsize (Category)}}\\203\textbf{\indent Returns:\ }204\texttt{true} or \texttt{false}205206207208The \textsf{GAP} category of a toric variety. }209210}211212213\section{\textcolor{Chapter }{Toric varieties: Properties}}\label{ToricVarieties:Properties}214\logpage{[ 3, 2, 0 ]}215\hyperdef{L}{X81C5B56F7A5E912E}{}216{217218219\subsection{\textcolor{Chapter }{IsNormalVariety}}220\logpage{[ 3, 2, 1 ]}\nobreak221\hyperdef{L}{X7D6DF89D7836A3D8}{}222{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsNormalVariety({\mdseries\slshape vari})\index{IsNormalVariety@\texttt{IsNormalVariety}}223\label{IsNormalVariety}224}\hfill{\scriptsize (property)}}\\225\textbf{\indent Returns:\ }226\texttt{true} or \texttt{false}227228229230Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is a normal variety. }231232233234\subsection{\textcolor{Chapter }{IsAffine}}235\logpage{[ 3, 2, 2 ]}\nobreak236\hyperdef{L}{X7E2687347A75468E}{}237{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsAffine({\mdseries\slshape vari})\index{IsAffine@\texttt{IsAffine}}238\label{IsAffine}239}\hfill{\scriptsize (property)}}\\240\textbf{\indent Returns:\ }241\texttt{true} or \texttt{false}242243244245Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is an affine variety. }246247248249\subsection{\textcolor{Chapter }{IsProjective}}250\logpage{[ 3, 2, 3 ]}\nobreak251\hyperdef{L}{X7EC041A77E7E46D2}{}252{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsProjective({\mdseries\slshape vari})\index{IsProjective@\texttt{IsProjective}}253\label{IsProjective}254}\hfill{\scriptsize (property)}}\\255\textbf{\indent Returns:\ }256\texttt{true} or \texttt{false}257258259260Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is a projective variety. }261262263264\subsection{\textcolor{Chapter }{IsComplete}}265\logpage{[ 3, 2, 4 ]}\nobreak266\hyperdef{L}{X7D689F21828A4278}{}267{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsComplete({\mdseries\slshape vari})\index{IsComplete@\texttt{IsComplete}}268\label{IsComplete}269}\hfill{\scriptsize (property)}}\\270\textbf{\indent Returns:\ }271\texttt{true} or \texttt{false}272273274275Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is a complete variety. }276277278279\subsection{\textcolor{Chapter }{IsSmooth}}280\logpage{[ 3, 2, 5 ]}\nobreak281\hyperdef{L}{X86CBF5497EC15CFC}{}282{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSmooth({\mdseries\slshape vari})\index{IsSmooth@\texttt{IsSmooth}}283\label{IsSmooth}284}\hfill{\scriptsize (property)}}\\285\textbf{\indent Returns:\ }286\texttt{true} or \texttt{false}287288289290Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is a smooth variety. }291292293294\subsection{\textcolor{Chapter }{HasTorusfactor}}295\logpage{[ 3, 2, 6 ]}\nobreak296\hyperdef{L}{X87B517958002AE71}{}297{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{HasTorusfactor({\mdseries\slshape vari})\index{HasTorusfactor@\texttt{HasTorusfactor}}298\label{HasTorusfactor}299}\hfill{\scriptsize (property)}}\\300\textbf{\indent Returns:\ }301\texttt{true} or \texttt{false}302303304305Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} has a torus factor. }306307308309\subsection{\textcolor{Chapter }{HasNoTorusfactor}}310\logpage{[ 3, 2, 7 ]}\nobreak311\hyperdef{L}{X83AF576586EFA7A6}{}312{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{HasNoTorusfactor({\mdseries\slshape vari})\index{HasNoTorusfactor@\texttt{HasNoTorusfactor}}313\label{HasNoTorusfactor}314}\hfill{\scriptsize (property)}}\\315\textbf{\indent Returns:\ }316\texttt{true} or \texttt{false}317318319320Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} has no torus factor. }321322323324\subsection{\textcolor{Chapter }{IsOrbifold}}325\logpage{[ 3, 2, 8 ]}\nobreak326\hyperdef{L}{X78CBF9007E82E5DF}{}327{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsOrbifold({\mdseries\slshape vari})\index{IsOrbifold@\texttt{IsOrbifold}}328\label{IsOrbifold}329}\hfill{\scriptsize (property)}}\\330\textbf{\indent Returns:\ }331\texttt{true} or \texttt{false}332333334335Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} has an orbifold, which is, in the toric case, equivalent to the simpliciality336of the fan. }337338}339340341\section{\textcolor{Chapter }{Toric varieties: Attributes}}\label{ToricVarieties:Attributes}342\logpage{[ 3, 3, 0 ]}343\hyperdef{L}{X7AA03F947802BFA6}{}344{345346347\subsection{\textcolor{Chapter }{AffineOpenCovering}}348\logpage{[ 3, 3, 1 ]}\nobreak349\hyperdef{L}{X82AB95E9870A50A6}{}350{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AffineOpenCovering({\mdseries\slshape vari})\index{AffineOpenCovering@\texttt{AffineOpenCovering}}351\label{AffineOpenCovering}352}\hfill{\scriptsize (attribute)}}\\353\textbf{\indent Returns:\ }354a list355356357358Returns a torus invariant affine open covering of the variety \mbox{\texttt{\mdseries\slshape vari}}. The affine open cover is computed out of the cones of the fan. }359360361362\subsection{\textcolor{Chapter }{CoxRing}}363\logpage{[ 3, 3, 2 ]}\nobreak364\hyperdef{L}{X78F279E67EE26EBF}{}365{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoxRing({\mdseries\slshape vari})\index{CoxRing@\texttt{CoxRing}}366\label{CoxRing}367}\hfill{\scriptsize (attribute)}}\\368\textbf{\indent Returns:\ }369a ring370371372373Returns the Cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}}. The actual method requires a string with a name for the variables. A method374for computing the Cox ring without a variable given is not implemented. You375will get an error. }376377378379\subsection{\textcolor{Chapter }{ListOfVariablesOfCoxRing}}380\logpage{[ 3, 3, 3 ]}\nobreak381\hyperdef{L}{X87C2F08C84052EB9}{}382{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ListOfVariablesOfCoxRing({\mdseries\slshape vari})\index{ListOfVariablesOfCoxRing@\texttt{ListOfVariablesOfCoxRing}}383\label{ListOfVariablesOfCoxRing}384}\hfill{\scriptsize (attribute)}}\\385\textbf{\indent Returns:\ }386a list387388389390Returns a list of the variables of the cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}}. }391392393394\subsection{\textcolor{Chapter }{ClassGroup}}395\logpage{[ 3, 3, 4 ]}\nobreak396\hyperdef{L}{X872024617ADBE423}{}397{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ClassGroup({\mdseries\slshape vari})\index{ClassGroup@\texttt{ClassGroup}}398\label{ClassGroup}399}\hfill{\scriptsize (attribute)}}\\400\textbf{\indent Returns:\ }401a module402403404405Returns the class group of the variety \mbox{\texttt{\mdseries\slshape vari}} as factor of a free module. }406407408409\subsection{\textcolor{Chapter }{PicardGroup}}410\logpage{[ 3, 3, 5 ]}\nobreak411\hyperdef{L}{X854A7BDA84D12EEC}{}412{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PicardGroup({\mdseries\slshape vari})\index{PicardGroup@\texttt{PicardGroup}}413\label{PicardGroup}414}\hfill{\scriptsize (attribute)}}\\415\textbf{\indent Returns:\ }416a module417418419420Returns the Picard group of the variety \mbox{\texttt{\mdseries\slshape vari}} as factor of a free module. }421422423424\subsection{\textcolor{Chapter }{TorusInvariantDivisorGroup}}425\logpage{[ 3, 3, 6 ]}\nobreak426\hyperdef{L}{X8025428782FE96E1}{}427{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{TorusInvariantDivisorGroup({\mdseries\slshape vari})\index{TorusInvariantDivisorGroup@\texttt{TorusInvariantDivisorGroup}}428\label{TorusInvariantDivisorGroup}429}\hfill{\scriptsize (attribute)}}\\430\textbf{\indent Returns:\ }431a module432433434435Returns the subgroup of the Weil divisor group of the variety \mbox{\texttt{\mdseries\slshape vari}} generated by the torus invariant prime divisors. This is always a finitely436generated free module over the integers. }437438439440\subsection{\textcolor{Chapter }{MapFromCharacterToPrincipalDivisor}}441\logpage{[ 3, 3, 7 ]}\nobreak442\hyperdef{L}{X86539CAC7DFFA60B}{}443{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MapFromCharacterToPrincipalDivisor({\mdseries\slshape vari})\index{MapFromCharacterToPrincipalDivisor@\texttt{MapFromCharacterToPrincipalDivisor}}444\label{MapFromCharacterToPrincipalDivisor}445}\hfill{\scriptsize (attribute)}}\\446\textbf{\indent Returns:\ }447a morphism448449450451Returns a map which maps an element of the character group into the torus452invariant Weil group of the variety \mbox{\texttt{\mdseries\slshape vari}}. This has to viewn as an help method to compute divisor classes. }453454455456\subsection{\textcolor{Chapter }{Dimension}}457\logpage{[ 3, 3, 8 ]}\nobreak458\hyperdef{L}{X7E6926C6850E7C4E}{}459{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Dimension({\mdseries\slshape vari})\index{Dimension@\texttt{Dimension}}460\label{Dimension}461}\hfill{\scriptsize (attribute)}}\\462\textbf{\indent Returns:\ }463an integer464465466467Returns the dimension of the variety \mbox{\texttt{\mdseries\slshape vari}}. }468469470471\subsection{\textcolor{Chapter }{DimensionOfTorusfactor}}472\logpage{[ 3, 3, 9 ]}\nobreak473\hyperdef{L}{X7843850F8735A926}{}474{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DimensionOfTorusfactor({\mdseries\slshape vari})\index{DimensionOfTorusfactor@\texttt{DimensionOfTorusfactor}}475\label{DimensionOfTorusfactor}476}\hfill{\scriptsize (attribute)}}\\477\textbf{\indent Returns:\ }478an integer479480481482Returns the dimension of the torus factor of the variety \mbox{\texttt{\mdseries\slshape vari}}. }483484485486\subsection{\textcolor{Chapter }{CoordinateRingOfTorus}}487\logpage{[ 3, 3, 10 ]}\nobreak488\hyperdef{L}{X8514A91A7CEA7092}{}489{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoordinateRingOfTorus({\mdseries\slshape vari})\index{CoordinateRingOfTorus@\texttt{CoordinateRingOfTorus}}490\label{CoordinateRingOfTorus}491}\hfill{\scriptsize (attribute)}}\\492\textbf{\indent Returns:\ }493a ring494495496497Returns the coordinate ring of the torus of the variety \mbox{\texttt{\mdseries\slshape vari}}. This method is not implemented, you need to call it with a second argument,498which is a list of strings for the variables of the ring. }499500501502\subsection{\textcolor{Chapter }{IsProductOf}}503\logpage{[ 3, 3, 11 ]}\nobreak504\hyperdef{L}{X876EF14B845E275E}{}505{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsProductOf({\mdseries\slshape vari})\index{IsProductOf@\texttt{IsProductOf}}506\label{IsProductOf}507}\hfill{\scriptsize (attribute)}}\\508\textbf{\indent Returns:\ }509a list510511512513If the variety \mbox{\texttt{\mdseries\slshape vari}} is a product of 2 or more varieties, the list contain those varieties. If it514is not a product or at least not generated as a product, the list only515contains the variety itself. }516517518519\subsection{\textcolor{Chapter }{CharacterLattice}}520\logpage{[ 3, 3, 12 ]}\nobreak521\hyperdef{L}{X81E2EA227D69040A}{}522{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CharacterLattice({\mdseries\slshape vari})\index{CharacterLattice@\texttt{CharacterLattice}}523\label{CharacterLattice}524}\hfill{\scriptsize (attribute)}}\\525\textbf{\indent Returns:\ }526a module527528529530The method returns the character lattice of the variety \mbox{\texttt{\mdseries\slshape vari}}, computed as the containing grid of the underlying convex object, if it531exists. }532533534535\subsection{\textcolor{Chapter }{TorusInvariantPrimeDivisors}}536\logpage{[ 3, 3, 13 ]}\nobreak537\hyperdef{L}{X84594CD787F6BA94}{}538{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{TorusInvariantPrimeDivisors({\mdseries\slshape vari})\index{TorusInvariantPrimeDivisors@\texttt{TorusInvariantPrimeDivisors}}539\label{TorusInvariantPrimeDivisors}540}\hfill{\scriptsize (attribute)}}\\541\textbf{\indent Returns:\ }542a list543544545546The method returns a list of the torus invariant prime divisors of the variety \mbox{\texttt{\mdseries\slshape vari}}. }547548549550\subsection{\textcolor{Chapter }{IrrelevantIdeal}}551\logpage{[ 3, 3, 14 ]}\nobreak552\hyperdef{L}{X78BB13787BA1C31C}{}553{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IrrelevantIdeal({\mdseries\slshape vari})\index{IrrelevantIdeal@\texttt{IrrelevantIdeal}}554\label{IrrelevantIdeal}555}\hfill{\scriptsize (attribute)}}\\556\textbf{\indent Returns:\ }557an ideal558559560561Returns the irrelevant ideal of the cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}}. }562563564565\subsection{\textcolor{Chapter }{MorphismFromCoxVariety}}566\logpage{[ 3, 3, 15 ]}\nobreak567\hyperdef{L}{X78CFA34884706A16}{}568{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MorphismFromCoxVariety({\mdseries\slshape vari})\index{MorphismFromCoxVariety@\texttt{MorphismFromCoxVariety}}569\label{MorphismFromCoxVariety}570}\hfill{\scriptsize (attribute)}}\\571\textbf{\indent Returns:\ }572a morphism573574575576The method returns the quotient morphism from the variety of the Cox ring to577the variety \mbox{\texttt{\mdseries\slshape vari}}. }578579580581\subsection{\textcolor{Chapter }{CoxVariety}}582\logpage{[ 3, 3, 16 ]}\nobreak583\hyperdef{L}{X8761518B7F4F6C58}{}584{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoxVariety({\mdseries\slshape vari})\index{CoxVariety@\texttt{CoxVariety}}585\label{CoxVariety}586}\hfill{\scriptsize (attribute)}}\\587\textbf{\indent Returns:\ }588a variety589590591592The method returns the Cox variety of the variety \mbox{\texttt{\mdseries\slshape vari}}. }593594595596\subsection{\textcolor{Chapter }{FanOfVariety}}597\logpage{[ 3, 3, 17 ]}\nobreak598\hyperdef{L}{X7F89CB52790F3E87}{}599{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FanOfVariety({\mdseries\slshape vari})\index{FanOfVariety@\texttt{FanOfVariety}}600\label{FanOfVariety}601}\hfill{\scriptsize (attribute)}}\\602\textbf{\indent Returns:\ }603a fan604605606607Returns the fan of the variety \mbox{\texttt{\mdseries\slshape vari}}. This is set by default. }608609610611\subsection{\textcolor{Chapter }{CartierTorusInvariantDivisorGroup}}612\logpage{[ 3, 3, 18 ]}\nobreak613\hyperdef{L}{X7BEC4BCD7B3B3522}{}614{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CartierTorusInvariantDivisorGroup({\mdseries\slshape vari})\index{CartierTorusInvariantDivisorGroup@\texttt{CartierTorusInvariantDivisorGroup}}615\label{CartierTorusInvariantDivisorGroup}616}\hfill{\scriptsize (attribute)}}\\617\textbf{\indent Returns:\ }618a module619620621622Returns the the group of Cartier divisors of the variety \mbox{\texttt{\mdseries\slshape vari}} as a subgroup of the divisor group. }623624625626\subsection{\textcolor{Chapter }{NameOfVariety}}627\logpage{[ 3, 3, 19 ]}\nobreak628\hyperdef{L}{X853D172E78C7D0B2}{}629{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{NameOfVariety({\mdseries\slshape vari})\index{NameOfVariety@\texttt{NameOfVariety}}630\label{NameOfVariety}631}\hfill{\scriptsize (attribute)}}\\632\textbf{\indent Returns:\ }633a string634635636637Returns the name of the variety \mbox{\texttt{\mdseries\slshape vari}} if it has one and it is known or can be computed. }638639640641\subsection{\textcolor{Chapter }{twitter}}642\logpage{[ 3, 3, 20 ]}\nobreak643\hyperdef{L}{X820E750381030706}{}644{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{twitter({\mdseries\slshape vari})\index{twitter@\texttt{twitter}}645\label{twitter}646}\hfill{\scriptsize (attribute)}}\\647\textbf{\indent Returns:\ }648a ring649650651652This is a dummy to get immediate methods triggered at some times. It never has653a value. }654655}656657658\section{\textcolor{Chapter }{Toric varieties: Methods}}\label{ToricVarieties:Methods}659\logpage{[ 3, 4, 0 ]}660\hyperdef{L}{X866EE174808EA7F9}{}661{662663664\subsection{\textcolor{Chapter }{UnderlyingSheaf}}665\logpage{[ 3, 4, 1 ]}\nobreak666\hyperdef{L}{X7DB5B6CB86F766A5}{}667{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingSheaf({\mdseries\slshape vari})\index{UnderlyingSheaf@\texttt{UnderlyingSheaf}}668\label{UnderlyingSheaf}669}\hfill{\scriptsize (operation)}}\\670\textbf{\indent Returns:\ }671a sheaf672673674675The method returns the underlying sheaf of the variety \mbox{\texttt{\mdseries\slshape vari}}. }676677678679\subsection{\textcolor{Chapter }{CoordinateRingOfTorus (for a variety and a list of variables)}}680\logpage{[ 3, 4, 2 ]}\nobreak681\hyperdef{L}{X7D01CCCE78FA1FDE}{}682{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoordinateRingOfTorus({\mdseries\slshape vari, vars})\index{CoordinateRingOfTorus@\texttt{CoordinateRingOfTorus}!for a variety and a list of variables}683\label{CoordinateRingOfTorus:for a variety and a list of variables}684}\hfill{\scriptsize (operation)}}\\685\textbf{\indent Returns:\ }686a ring687688689690Computes the coordinate ring of the torus of the variety \mbox{\texttt{\mdseries\slshape vari}} with the variables \mbox{\texttt{\mdseries\slshape vars}}. The argument \mbox{\texttt{\mdseries\slshape vars}} need to be a list of strings with length dimension or two times dimension. }691692693694\subsection{\textcolor{Chapter }{\texttt{\symbol{92}}*}}695\logpage{[ 3, 4, 3 ]}\nobreak696\hyperdef{L}{X7857704878577048}{}697{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{\texttt{\symbol{92}}*({\mdseries\slshape vari1, vari2})\index{*@\texttt{\texttt{\symbol{92}}*}}698\label{*}699}\hfill{\scriptsize (operation)}}\\700\textbf{\indent Returns:\ }701a variety702703704705Computes the categorial product of the varieties \mbox{\texttt{\mdseries\slshape vari1}} and \mbox{\texttt{\mdseries\slshape vari2}}. }706707708709\subsection{\textcolor{Chapter }{CharacterToRationalFunction}}710\logpage{[ 3, 4, 4 ]}\nobreak711\hyperdef{L}{X80DBA6A18199A4A4}{}712{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CharacterToRationalFunction({\mdseries\slshape elem, vari})\index{CharacterToRationalFunction@\texttt{CharacterToRationalFunction}}713\label{CharacterToRationalFunction}714}\hfill{\scriptsize (operation)}}\\715\textbf{\indent Returns:\ }716a homalg element717718719720Computes the rational function corresponding to the character grid element \mbox{\texttt{\mdseries\slshape elem}} or to the list of integers \mbox{\texttt{\mdseries\slshape elem}}. To compute rational functions you first need to compute to coordinate ring721of the torus of the variety \mbox{\texttt{\mdseries\slshape vari}}. }722723724725\subsection{\textcolor{Chapter }{CoxRing (for a variety and a string of variables)}}726\logpage{[ 3, 4, 5 ]}\nobreak727\hyperdef{L}{X80917C0C82171774}{}728{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoxRing({\mdseries\slshape vari, vars})\index{CoxRing@\texttt{CoxRing}!for a variety and a string of variables}729\label{CoxRing:for a variety and a string of variables}730}\hfill{\scriptsize (operation)}}\\731\textbf{\indent Returns:\ }732a ring733734735736Computes the Cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}}. \mbox{\texttt{\mdseries\slshape vars}} needs to be a string containing one variable, which will be numbered by the737method. }738739740741\subsection{\textcolor{Chapter }{WeilDivisorsOfVariety}}742\logpage{[ 3, 4, 6 ]}\nobreak743\hyperdef{L}{X79474EA085374986}{}744{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{WeilDivisorsOfVariety({\mdseries\slshape vari})\index{WeilDivisorsOfVariety@\texttt{WeilDivisorsOfVariety}}745\label{WeilDivisorsOfVariety}746}\hfill{\scriptsize (operation)}}\\747\textbf{\indent Returns:\ }748a list749750751752Returns a list of the currently defined Divisors of the toric variety. }753754755756\subsection{\textcolor{Chapter }{Fan}}757\logpage{[ 3, 4, 7 ]}\nobreak758\hyperdef{L}{X80D0196B80DC94F3}{}759{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Fan({\mdseries\slshape vari})\index{Fan@\texttt{Fan}}760\label{Fan}761}\hfill{\scriptsize (operation)}}\\762\textbf{\indent Returns:\ }763a fan764765766767Returns the fan of the variety \mbox{\texttt{\mdseries\slshape vari}}. This is a rename for FanOfVariety. }768769}770771772\section{\textcolor{Chapter }{Toric varieties: Constructors}}\label{ToricVarieties:Constructors}773\logpage{[ 3, 5, 0 ]}774\hyperdef{L}{X7C1E65F7809F51A7}{}775{776777778\subsection{\textcolor{Chapter }{ToricVariety}}779\logpage{[ 3, 5, 1 ]}\nobreak780\hyperdef{L}{X84CA1FBC8057E3E0}{}781{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricVariety({\mdseries\slshape conv})\index{ToricVariety@\texttt{ToricVariety}}782\label{ToricVariety}783}\hfill{\scriptsize (operation)}}\\784\textbf{\indent Returns:\ }785a ring786787788789Creates a toric variety out of the convex object \mbox{\texttt{\mdseries\slshape conv}}. }790791}792793794\section{\textcolor{Chapter }{Toric varieties: Examples}}\label{ToricVarieties:Examples}795\logpage{[ 3, 6, 0 ]}796\hyperdef{L}{X802337377FDC8121}{}797{798799\subsection{\textcolor{Chapter }{The Hirzebruch surface of index 5}}\label{Hirzebruch5Example}800\logpage{[ 3, 6, 1 ]}801\hyperdef{L}{X7F674AD387A33155}{}802{803804\begin{Verbatim}[commandchars=!@E,fontsize=\small,frame=single,label=Example]805!gapprompt@gap>E !gapinput@H5 := Fan( [[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]] );E806<A fan in |R^2>807!gapprompt@gap>E !gapinput@H5 := ToricVariety( H5 );E808<A toric variety of dimension 2>809!gapprompt@gap>E !gapinput@IsComplete( H5 );E810true811!gapprompt@gap>E !gapinput@IsAffine( H5 );E812false813!gapprompt@gap>E !gapinput@IsOrbifold( H5 );E814true815!gapprompt@gap>E !gapinput@IsProjective( H5 );E816true817!gapprompt@gap>E !gapinput@TorusInvariantPrimeDivisors(H5);E818[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,819<A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>,820<A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,821<A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]822!gapprompt@gap>E !gapinput@P := TorusInvariantPrimeDivisors(H5);E823[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,824<A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>,825<A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,826<A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]827!gapprompt@gap>E !gapinput@A := P[ 1 ] - P[ 2 ] + 4*P[ 3 ];E828<A divisor of a toric variety with coordinates [ 1, -1, 4, 0 ]>829!gapprompt@gap>E !gapinput@A;E830<A divisor of a toric variety with coordinates [ 1, -1, 4, 0 ]>831!gapprompt@gap>E !gapinput@IsAmple(A);E832false833!gapprompt@gap>E !gapinput@CoordinateRingOfTorus(H5,"x");;E834Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )835!gapprompt@gap>E !gapinput@D:=CreateDivisor([0,0,0,0],H5);E836<A divisor of a toric variety with coordinates 0>837!gapprompt@gap>E !gapinput@BasisOfGlobalSections(D);E838[ |[ 1 ]| ]839!gapprompt@gap>E !gapinput@D:=Sum(P);E840<A divisor of a toric variety with coordinates [ 1, 1, 1, 1 ]>841!gapprompt@gap>E !gapinput@BasisOfGlobalSections(D);E842[ |[ x1_ ]|, |[ x1_*x2 ]|, |[ 1 ]|, |[ x2 ]|,843|[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|,844|[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|,845|[ x1^6*x2 ]| ]846!gapprompt@gap>E !gapinput@DivisorOfCharacter([1,2],H5);E847<A principal divisor of a toric variety with coordinates [ 9, 2, 1, -2 ]>848!gapprompt@gap>E !gapinput@BasisOfGlobalSections(last);E849[ |[ x1_*x2_^2 ]| ]850\end{Verbatim}851}852853}854855}856857858\chapter{\textcolor{Chapter }{Toric subvarieties}}\label{Subvarieties}859\logpage{[ 4, 0, 0 ]}860\hyperdef{L}{X84370283823C138C}{}861{862863\section{\textcolor{Chapter }{Toric subvarieties: Category and Representations}}\label{Subvarieties:Category}864\logpage{[ 4, 1, 0 ]}865\hyperdef{L}{X7A22F3137FA25458}{}866{867868869\subsection{\textcolor{Chapter }{IsToricSubvariety}}870\logpage{[ 4, 1, 1 ]}\nobreak871\hyperdef{L}{X85CA472F7A14BF8C}{}872{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsToricSubvariety({\mdseries\slshape M})\index{IsToricSubvariety@\texttt{IsToricSubvariety}}873\label{IsToricSubvariety}874}\hfill{\scriptsize (Category)}}\\875\textbf{\indent Returns:\ }876\texttt{true} or \texttt{false}877878879880The \textsf{GAP} category of a toric subvariety. Every toric subvariety is a toric variety, so881every method applicable to toric varieties is also applicable to toric882subvarieties. }883884}885886887\section{\textcolor{Chapter }{Toric subvarieties: Properties}}\label{Subvarieties:Properties}888\logpage{[ 4, 2, 0 ]}889\hyperdef{L}{X826EDD1B846E74B0}{}890{891892893\subsection{\textcolor{Chapter }{IsClosed}}894\logpage{[ 4, 2, 1 ]}\nobreak895\hyperdef{L}{X81D5A4A97AA9D4B0}{}896{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsClosed({\mdseries\slshape vari})\index{IsClosed@\texttt{IsClosed}}897\label{IsClosed}898}\hfill{\scriptsize (property)}}\\899\textbf{\indent Returns:\ }900\texttt{true} or \texttt{false}901902903904Checks if the subvariety \mbox{\texttt{\mdseries\slshape vari}} is a closed subset of its ambient variety. }905906907908\subsection{\textcolor{Chapter }{IsOpen}}909\logpage{[ 4, 2, 2 ]}\nobreak910\hyperdef{L}{X8247435184B2DE47}{}911{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsOpen({\mdseries\slshape vari})\index{IsOpen@\texttt{IsOpen}}912\label{IsOpen}913}\hfill{\scriptsize (property)}}\\914\textbf{\indent Returns:\ }915\texttt{true} or \texttt{false}916917918919Checks if a subvariety is a closed subset. }920921922923\subsection{\textcolor{Chapter }{IsWholeVariety}}924\logpage{[ 4, 2, 3 ]}\nobreak925\hyperdef{L}{X7A9968777C5E19A4}{}926{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsWholeVariety({\mdseries\slshape vari})\index{IsWholeVariety@\texttt{IsWholeVariety}}927\label{IsWholeVariety}928}\hfill{\scriptsize (property)}}\\929\textbf{\indent Returns:\ }930\texttt{true} or \texttt{false}931932933934Returns true if the subvariety \mbox{\texttt{\mdseries\slshape vari}} is the whole variety. }935936}937938939\section{\textcolor{Chapter }{Toric subvarieties: Attributes}}\label{Subvarieties:Attributes}940\logpage{[ 4, 3, 0 ]}941\hyperdef{L}{X790B57E084CC7198}{}942{943944945\subsection{\textcolor{Chapter }{UnderlyingToricVariety}}946\logpage{[ 4, 3, 1 ]}\nobreak947\hyperdef{L}{X7D9CEB4A878CC07C}{}948{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingToricVariety({\mdseries\slshape vari})\index{UnderlyingToricVariety@\texttt{UnderlyingToricVariety}}949\label{UnderlyingToricVariety}950}\hfill{\scriptsize (attribute)}}\\951\textbf{\indent Returns:\ }952a variety953954955956Returns the toric variety which is represented by \mbox{\texttt{\mdseries\slshape vari}}. This method implements the forgetful functor subvarieties -{\textgreater}957varieties. }958959960961\subsection{\textcolor{Chapter }{InclusionMorphism}}962\logpage{[ 4, 3, 2 ]}\nobreak963\hyperdef{L}{X84AE669679A57F17}{}964{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{InclusionMorphism({\mdseries\slshape vari})\index{InclusionMorphism@\texttt{InclusionMorphism}}965\label{InclusionMorphism}966}\hfill{\scriptsize (attribute)}}\\967\textbf{\indent Returns:\ }968a morphism969970971972If the variety \mbox{\texttt{\mdseries\slshape vari}} is an open subvariety, this method returns the inclusion morphism in its973ambient variety. If not, it will fail. }974975976977\subsection{\textcolor{Chapter }{AmbientToricVariety}}978\logpage{[ 4, 3, 3 ]}\nobreak979\hyperdef{L}{X87ADD8677D3DC498}{}980{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AmbientToricVariety({\mdseries\slshape vari})\index{AmbientToricVariety@\texttt{AmbientToricVariety}}981\label{AmbientToricVariety}982}\hfill{\scriptsize (attribute)}}\\983\textbf{\indent Returns:\ }984a variety985986987988Returns the ambient toric variety of the subvariety \mbox{\texttt{\mdseries\slshape vari}} }989990}991992993\section{\textcolor{Chapter }{Toric subvarieties: Methods}}\label{Subvarieties:Methods}994\logpage{[ 4, 4, 0 ]}995\hyperdef{L}{X7B50D40D858C8B3C}{}996{997998999\subsection{\textcolor{Chapter }{ClosureOfTorusOrbitOfCone}}1000\logpage{[ 4, 4, 1 ]}\nobreak1001\hyperdef{L}{X7E9E173183C04931}{}1002{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ClosureOfTorusOrbitOfCone({\mdseries\slshape vari, cone})\index{ClosureOfTorusOrbitOfCone@\texttt{ClosureOfTorusOrbitOfCone}}1003\label{ClosureOfTorusOrbitOfCone}1004}\hfill{\scriptsize (operation)}}\\1005\textbf{\indent Returns:\ }1006a subvariety1007100810091010The method returns the closure of the orbit of the torus contained in \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the cone \mbox{\texttt{\mdseries\slshape cone}} as a closed subvariety of \mbox{\texttt{\mdseries\slshape vari}}. }10111012}101310141015\section{\textcolor{Chapter }{Toric subvarieties: Constructors}}\label{Subvarieties:Constructors}1016\logpage{[ 4, 5, 0 ]}1017\hyperdef{L}{X7C5DB208861E7E7F}{}1018{101910201021\subsection{\textcolor{Chapter }{ToricSubvariety}}1022\logpage{[ 4, 5, 1 ]}\nobreak1023\hyperdef{L}{X851CDD807D40B7EF}{}1024{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricSubvariety({\mdseries\slshape vari, ambvari})\index{ToricSubvariety@\texttt{ToricSubvariety}}1025\label{ToricSubvariety}1026}\hfill{\scriptsize (operation)}}\\1027\textbf{\indent Returns:\ }1028a subvariety1029103010311032The method returns the closure of the orbit of the torus contained in \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the cone \mbox{\texttt{\mdseries\slshape cone}} as a closed subvariety of \mbox{\texttt{\mdseries\slshape vari}}. }10331034}10351036}103710381039\chapter{\textcolor{Chapter }{Affine toric varieties}}\label{AffineVariety}1040\logpage{[ 5, 0, 0 ]}1041\hyperdef{L}{X82F418F483E4D0D6}{}1042{10431044\section{\textcolor{Chapter }{Affine toric varieties: Category and Representations}}\label{AffineVariety:Category}1045\logpage{[ 5, 1, 0 ]}1046\hyperdef{L}{X83355FC284165BD4}{}1047{104810491050\subsection{\textcolor{Chapter }{IsAffineToricVariety}}1051\logpage{[ 5, 1, 1 ]}\nobreak1052\hyperdef{L}{X7ED0399F81CBB82D}{}1053{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsAffineToricVariety({\mdseries\slshape M})\index{IsAffineToricVariety@\texttt{IsAffineToricVariety}}1054\label{IsAffineToricVariety}1055}\hfill{\scriptsize (Category)}}\\1056\textbf{\indent Returns:\ }1057\texttt{true} or \texttt{false}1058105910601061The \textsf{GAP} category of an affine toric variety. All affine toric varieties are toric1062varieties, so everything applicable to toric varieties is applicable to affine1063toric varieties. }10641065}106610671068\section{\textcolor{Chapter }{Affine toric varieties: Properties}}\label{AffineVariety:Properties}1069\logpage{[ 5, 2, 0 ]}1070\hyperdef{L}{X80DB08C5837B0A49}{}1071{1072Affine toric varieties have no additional properties. Remember that affine1073toric varieties are toric varieties, so every property of a toric variety is a1074property of an affine toric variety. }107510761077\section{\textcolor{Chapter }{Affine toric varieties: Attributes}}\label{AffineVariety:Attributes}1078\logpage{[ 5, 3, 0 ]}1079\hyperdef{L}{X7BBE823E8205F52F}{}1080{108110821083\subsection{\textcolor{Chapter }{CoordinateRing}}1084\logpage{[ 5, 3, 1 ]}\nobreak1085\hyperdef{L}{X81BCE73D8353F9DE}{}1086{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoordinateRing({\mdseries\slshape vari})\index{CoordinateRing@\texttt{CoordinateRing}}1087\label{CoordinateRing}1088}\hfill{\scriptsize (attribute)}}\\1089\textbf{\indent Returns:\ }1090a ring1091109210931094Returns the coordinate ring of the affine toric variety \mbox{\texttt{\mdseries\slshape vari}}. The computation is mainly done in ToricIdeals package. }1095109610971098\subsection{\textcolor{Chapter }{ListOfVariablesOfCoordinateRing}}1099\logpage{[ 5, 3, 2 ]}\nobreak1100\hyperdef{L}{X7F459CD178502F4E}{}1101{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ListOfVariablesOfCoordinateRing({\mdseries\slshape vari})\index{ListOfVariablesOfCoordinateRing@\texttt{ListOfVariablesOfCoordinateRing}}1102\label{ListOfVariablesOfCoordinateRing}1103}\hfill{\scriptsize (attribute)}}\\1104\textbf{\indent Returns:\ }1105a list1106110711081109Returns a list containing the variables of the CoordinateRing of the variety \mbox{\texttt{\mdseries\slshape vari}}. }1110111111121113\subsection{\textcolor{Chapter }{MorphismFromCoordinateRingToCoordinateRingOfTorus}}1114\logpage{[ 5, 3, 3 ]}\nobreak1115\hyperdef{L}{X82A61ED17E17D0C2}{}1116{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MorphismFromCoordinateRingToCoordinateRingOfTorus({\mdseries\slshape vari})\index{MorphismFromCoordinateRingToCoordinateRingOfTorus@\texttt{Morphism}\-\texttt{From}\-\texttt{Coordinate}\-\texttt{Ring}\-\texttt{To}\-\texttt{Coordinate}\-\texttt{Ring}\-\texttt{Of}\-\texttt{Torus}}1117\label{MorphismFromCoordinateRingToCoordinateRingOfTorus}1118}\hfill{\scriptsize (attribute)}}\\1119\textbf{\indent Returns:\ }1120a morphism1121112211231124Returns the morphism between the coordinate ring of the variety \mbox{\texttt{\mdseries\slshape vari}} and the coordinate ring of its torus. This defines the embedding of the torus1125in the variety. }1126112711281129\subsection{\textcolor{Chapter }{ConeOfVariety}}1130\logpage{[ 5, 3, 4 ]}\nobreak1131\hyperdef{L}{X8642EA7886E09E44}{}1132{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ConeOfVariety({\mdseries\slshape vari})\index{ConeOfVariety@\texttt{ConeOfVariety}}1133\label{ConeOfVariety}1134}\hfill{\scriptsize (attribute)}}\\1135\textbf{\indent Returns:\ }1136a cone1137113811391140Returns the cone ring of the affine toric variety \mbox{\texttt{\mdseries\slshape vari}}. }11411142}114311441145\section{\textcolor{Chapter }{Affine toric varieties: Methods}}\label{AffineVariety:Methods}1146\logpage{[ 5, 4, 0 ]}1147\hyperdef{L}{X8012A86C8008CC21}{}1148{114911501151\subsection{\textcolor{Chapter }{CoordinateRing (for affine Varieties)}}1152\logpage{[ 5, 4, 1 ]}\nobreak1153\hyperdef{L}{X85926C9D8411CCC1}{}1154{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoordinateRing({\mdseries\slshape vari, indet})\index{CoordinateRing@\texttt{CoordinateRing}!for affine Varieties}1155\label{CoordinateRing:for affine Varieties}1156}\hfill{\scriptsize (operation)}}\\1157\textbf{\indent Returns:\ }1158a variety1159116011611162Computes the coordinate ring of the affine toric variety \mbox{\texttt{\mdseries\slshape vari}} with indeterminates \mbox{\texttt{\mdseries\slshape indet}}. }1163116411651166\subsection{\textcolor{Chapter }{Cone}}1167\logpage{[ 5, 4, 2 ]}\nobreak1168\hyperdef{L}{X822975FC7F646FE5}{}1169{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Cone({\mdseries\slshape vari})\index{Cone@\texttt{Cone}}1170\label{Cone}1171}\hfill{\scriptsize (operation)}}\\1172\textbf{\indent Returns:\ }1173a cone1174117511761177Returns the cone of the variety \mbox{\texttt{\mdseries\slshape vari}}. Another name for ConeOfVariety for compatibility and shortness. }11781179}118011811182\section{\textcolor{Chapter }{Affine toric varieties: Constructors}}\label{AffineVariety:Constructors}1183\logpage{[ 5, 5, 0 ]}1184\hyperdef{L}{X846A65F77C4BEA35}{}1185{1186The constructors are the same as for toric varieties. Calling them with a cone1187will result in an affine variety. }118811891190\section{\textcolor{Chapter }{Affine toric Varieties: Examples}}\label{AffineVariety:Examples}1191\logpage{[ 5, 6, 0 ]}1192\hyperdef{L}{X8068F91F7C001DE7}{}1193{11941195\subsection{\textcolor{Chapter }{Affine space}}\label{AffineSpaceExampleSubsection}1196\logpage{[ 5, 6, 1 ]}1197\hyperdef{L}{X782DF75D8761D85B}{}1198{11991200\begin{Verbatim}[commandchars=!@B,fontsize=\small,frame=single,label=Example]1201!gapprompt@gap>B !gapinput@C:=Cone( [[1,0,0],[0,1,0],[0,0,1]] );B1202<A cone in |R^3>1203!gapprompt@gap>B !gapinput@C3:=ToricVariety(C);B1204<An affine normal toric variety of dimension 3>1205!gapprompt@gap>B !gapinput@Dimension(C3);B120631207!gapprompt@gap>B !gapinput@IsOrbifold(C3);B1208true1209!gapprompt@gap>B !gapinput@IsSmooth(C3);B1210true1211!gapprompt@gap>B !gapinput@CoordinateRingOfTorus(C3,"x");B1212Q[x1,x1_,x2,x2_,x3,x3_]/( x3*x3_-1, x2*x2_-1, x1*x1_-1 )1213!gapprompt@gap>B !gapinput@CoordinateRing(C3,"x");B1214Q[x_1,x_2,x_3]1215!gapprompt@gap>B !gapinput@MorphismFromCoordinateRingToCoordinateRingOfTorus(C3);B1216<A monomorphism of rings>1217!gapprompt@gap>B !gapinput@C3;B1218<An affine normal smooth toric variety of dimension 3>1219!gapprompt@gap>B !gapinput@StructureDescription(C3);B1220"|A^3"1221\end{Verbatim}1222}12231224}12251226}122712281229\chapter{\textcolor{Chapter }{Projective toric varieties}}\label{ProjectiveVariety}1230\logpage{[ 6, 0, 0 ]}1231\hyperdef{L}{X7EEBFF7883297DBC}{}1232{12331234\section{\textcolor{Chapter }{Projective toric varieties: Category and Representations}}\label{ProjectiveVariety:Category}1235\logpage{[ 6, 1, 0 ]}1236\hyperdef{L}{X7A7AC40C780CAF75}{}1237{123812391240\subsection{\textcolor{Chapter }{IsProjectiveToricVariety}}1241\logpage{[ 6, 1, 1 ]}\nobreak1242\hyperdef{L}{X7D7A64ED86E8C558}{}1243{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsProjectiveToricVariety({\mdseries\slshape M})\index{IsProjectiveToricVariety@\texttt{IsProjectiveToricVariety}}1244\label{IsProjectiveToricVariety}1245}\hfill{\scriptsize (Category)}}\\1246\textbf{\indent Returns:\ }1247\texttt{true} or \texttt{false}1248124912501251The \textsf{GAP} category of a projective toric variety. }12521253}125412551256\section{\textcolor{Chapter }{Projective toric varieties: Properties}}\label{ProjectiveVariety:Properties}1257\logpage{[ 6, 2, 0 ]}1258\hyperdef{L}{X826634D3848FC540}{}1259{1260Projective toric varieties have no additional properties. Remember that1261projective toric varieties are toric varieties, so every property of a toric1262variety is a property of an projective toric variety. }126312641265\section{\textcolor{Chapter }{Projective toric varieties: Attributes}}\label{ProjectiveVariety:Attributes}1266\logpage{[ 6, 3, 0 ]}1267\hyperdef{L}{X7903BE287F71B26E}{}1268{126912701271\subsection{\textcolor{Chapter }{AffineCone}}1272\logpage{[ 6, 3, 1 ]}\nobreak1273\hyperdef{L}{X7C3748B8878B799A}{}1274{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AffineCone({\mdseries\slshape vari})\index{AffineCone@\texttt{AffineCone}}1275\label{AffineCone}1276}\hfill{\scriptsize (attribute)}}\\1277\textbf{\indent Returns:\ }1278a variety1279128012811282Returns the affine cone of the projective toric variety \mbox{\texttt{\mdseries\slshape vari}}. }1283128412851286\subsection{\textcolor{Chapter }{PolytopeOfVariety}}1287\logpage{[ 6, 3, 2 ]}\nobreak1288\hyperdef{L}{X791054957C1EE370}{}1289{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PolytopeOfVariety({\mdseries\slshape vari})\index{PolytopeOfVariety@\texttt{PolytopeOfVariety}}1290\label{PolytopeOfVariety}1291}\hfill{\scriptsize (attribute)}}\\1292\textbf{\indent Returns:\ }1293a polytope1294129512961297Returns the polytope corresponding to the projective toric variety \mbox{\texttt{\mdseries\slshape vari}}, if it exists. }1298129913001301\subsection{\textcolor{Chapter }{ProjectiveEmbedding}}1302\logpage{[ 6, 3, 3 ]}\nobreak1303\hyperdef{L}{X7CD1FB1E83F80D5F}{}1304{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ProjectiveEmbedding({\mdseries\slshape vari})\index{ProjectiveEmbedding@\texttt{ProjectiveEmbedding}}1305\label{ProjectiveEmbedding}1306}\hfill{\scriptsize (attribute)}}\\1307\textbf{\indent Returns:\ }1308a list1309131013111312Returns characters for a closed embedding in an projective space for the1313projective toric variety \mbox{\texttt{\mdseries\slshape vari}}. }13141315}131613171318\section{\textcolor{Chapter }{Projective toric varieties: Methods}}\label{ProjectiveVariety:Methods}1319\logpage{[ 6, 4, 0 ]}1320\hyperdef{L}{X7D9E26467C26EFE6}{}1321{132213231324\subsection{\textcolor{Chapter }{Polytope}}1325\logpage{[ 6, 4, 1 ]}\nobreak1326\hyperdef{L}{X855106007DE72898}{}1327{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Polytope({\mdseries\slshape vari})\index{Polytope@\texttt{Polytope}}1328\label{Polytope}1329}\hfill{\scriptsize (operation)}}\\1330\textbf{\indent Returns:\ }1331a polytope1332133313341335Returns the polytope of the variety \mbox{\texttt{\mdseries\slshape vari}}. Another name for PolytopeOfVariety for compatibility and shortness. }13361337}133813391340\section{\textcolor{Chapter }{Projective toric varieties: Constructors}}\label{ProjectiveVariety:Constructors}1341\logpage{[ 6, 5, 0 ]}1342\hyperdef{L}{X81EFA5668447D0A4}{}1343{1344The constructors are the same as for toric varieties. Calling them with a1345polytope will result in an projective variety. }134613471348\section{\textcolor{Chapter }{Projective toric varieties: Examples}}\label{ProjectiveVariety:Examples}1349\logpage{[ 6, 6, 0 ]}1350\hyperdef{L}{X8403EE76819E200F}{}1351{13521353\subsection{\textcolor{Chapter }{PxP1 created by a polytope}}\label{P1P1PolytopeExampleSubsection}1354\logpage{[ 6, 6, 1 ]}1355\hyperdef{L}{X802DB11784310E99}{}1356{13571358\begin{Verbatim}[commandchars=!@B,fontsize=\small,frame=single,label=Example]1359!gapprompt@gap>B !gapinput@P1P1 := Polytope( [[1,1],[1,-1],[-1,-1],[-1,1]] );B1360<A polytope in |R^2>1361!gapprompt@gap>B !gapinput@P1P1 := ToricVariety( P1P1 );B1362<A projective toric variety of dimension 2>1363!gapprompt@gap>B !gapinput@IsProjective( P1P1 );B1364true1365!gapprompt@gap>B !gapinput@IsComplete( P1P1 );B1366true1367!gapprompt@gap>B !gapinput@CoordinateRingOfTorus( P1P1, "x" );B1368Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )1369!gapprompt@gap>B !gapinput@IsVeryAmple( Polytope( P1P1 ) );B1370true1371!gapprompt@gap>B !gapinput@ProjectiveEmbedding( P1P1 );B1372[ |[ x1_*x2_ ]|, |[ x1_ ]|, |[ x1_*x2 ]|, |[ x2_ ]|,1373|[ 1 ]|, |[ x2 ]|, |[ x1*x2_ ]|, |[ x1 ]|, |[ x1*x2 ]| ]1374!gapprompt@gap>B !gapinput@Length( last );B137591376\end{Verbatim}1377}13781379}13801381}138213831384\chapter{\textcolor{Chapter }{Toric morphisms}}\label{Morphisms}1385\logpage{[ 7, 0, 0 ]}1386\hyperdef{L}{X7FA18F537F3F5237}{}1387{13881389\section{\textcolor{Chapter }{Toric morphisms: Category and Representations}}\label{Morphisms:Category}1390\logpage{[ 7, 1, 0 ]}1391\hyperdef{L}{X82A09A77805957FA}{}1392{139313941395\subsection{\textcolor{Chapter }{IsToricMorphism}}1396\logpage{[ 7, 1, 1 ]}\nobreak1397\hyperdef{L}{X85AC9E7B86C259AF}{}1398{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsToricMorphism({\mdseries\slshape M})\index{IsToricMorphism@\texttt{IsToricMorphism}}1399\label{IsToricMorphism}1400}\hfill{\scriptsize (Category)}}\\1401\textbf{\indent Returns:\ }1402\texttt{true} or \texttt{false}1403140414051406The \textsf{GAP} category of toric morphisms. A toric morphism is defined by a grid1407homomorphism, which is compatible with the fan structure of the two varieties. }14081409}141014111412\section{\textcolor{Chapter }{Toric morphisms: Properties}}\label{Morphisms:Properties}1413\logpage{[ 7, 2, 0 ]}1414\hyperdef{L}{X82BECE3A7EA231D1}{}1415{141614171418\subsection{\textcolor{Chapter }{IsMorphism}}1419\logpage{[ 7, 2, 1 ]}\nobreak1420\hyperdef{L}{X7F66120A814DC16B}{}1421{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsMorphism({\mdseries\slshape morph})\index{IsMorphism@\texttt{IsMorphism}}1422\label{IsMorphism}1423}\hfill{\scriptsize (property)}}\\1424\textbf{\indent Returns:\ }1425\texttt{true} or \texttt{false}1426142714281429Checks if the grid morphism \mbox{\texttt{\mdseries\slshape morph}} respects the fan structure. }1430143114321433\subsection{\textcolor{Chapter }{IsProper}}1434\logpage{[ 7, 2, 2 ]}\nobreak1435\hyperdef{L}{X7B15A1848387B3C8}{}1436{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsProper({\mdseries\slshape morph})\index{IsProper@\texttt{IsProper}}1437\label{IsProper}1438}\hfill{\scriptsize (property)}}\\1439\textbf{\indent Returns:\ }1440\texttt{true} or \texttt{false}1441144214431444Checks if the defined morphism \mbox{\texttt{\mdseries\slshape morph}} is proper. }14451446}144714481449\section{\textcolor{Chapter }{Toric morphisms: Attributes}}\label{Morphisms:Attributes}1450\logpage{[ 7, 3, 0 ]}1451\hyperdef{L}{X79DB44C17CFE1F59}{}1452{145314541455\subsection{\textcolor{Chapter }{SourceObject}}1456\logpage{[ 7, 3, 1 ]}\nobreak1457\hyperdef{L}{X7912BF2F79064BB9}{}1458{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{SourceObject({\mdseries\slshape morph})\index{SourceObject@\texttt{SourceObject}}1459\label{SourceObject}1460}\hfill{\scriptsize (attribute)}}\\1461\textbf{\indent Returns:\ }1462a variety1463146414651466Returns the source object of the morphism \mbox{\texttt{\mdseries\slshape morph}}. This attribute is a must have. }1467146814691470\subsection{\textcolor{Chapter }{UnderlyingGridMorphism}}1471\logpage{[ 7, 3, 2 ]}\nobreak1472\hyperdef{L}{X81558ABE8360E43D}{}1473{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingGridMorphism({\mdseries\slshape morph})\index{UnderlyingGridMorphism@\texttt{UnderlyingGridMorphism}}1474\label{UnderlyingGridMorphism}1475}\hfill{\scriptsize (attribute)}}\\1476\textbf{\indent Returns:\ }1477a map1478147914801481Returns the grid map which defines \mbox{\texttt{\mdseries\slshape morph}}. }1482148314841485\subsection{\textcolor{Chapter }{ToricImageObject}}1486\logpage{[ 7, 3, 3 ]}\nobreak1487\hyperdef{L}{X7F82AD6D7A967E25}{}1488{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricImageObject({\mdseries\slshape morph})\index{ToricImageObject@\texttt{ToricImageObject}}1489\label{ToricImageObject}1490}\hfill{\scriptsize (attribute)}}\\1491\textbf{\indent Returns:\ }1492a variety1493149414951496Returns the variety which is created by the fan which is the image of the fan1497of the source of \mbox{\texttt{\mdseries\slshape morph}}. This is not an image in the usual sense, but a toric image. }1498149915001501\subsection{\textcolor{Chapter }{RangeObject}}1502\logpage{[ 7, 3, 4 ]}\nobreak1503\hyperdef{L}{X7ABADFCD80C507FB}{}1504{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RangeObject({\mdseries\slshape morph})\index{RangeObject@\texttt{RangeObject}}1505\label{RangeObject}1506}\hfill{\scriptsize (attribute)}}\\1507\textbf{\indent Returns:\ }1508a variety1509151015111512Returns the range of the morphism \mbox{\texttt{\mdseries\slshape morph}}. If no range is given (yes, this is possible), the method returns the image. }1513151415151516\subsection{\textcolor{Chapter }{MorphismOnWeilDivisorGroup}}1517\logpage{[ 7, 3, 5 ]}\nobreak1518\hyperdef{L}{X81B87EE486EFA0A4}{}1519{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MorphismOnWeilDivisorGroup({\mdseries\slshape morph})\index{MorphismOnWeilDivisorGroup@\texttt{MorphismOnWeilDivisorGroup}}1520\label{MorphismOnWeilDivisorGroup}1521}\hfill{\scriptsize (attribute)}}\\1522\textbf{\indent Returns:\ }1523a morphism1524152515261527Returns the associated morphism between the divisor group of the range of \mbox{\texttt{\mdseries\slshape morph}} and the divisor group of the source. }1528152915301531\subsection{\textcolor{Chapter }{ClassGroup (for toric morphisms)}}1532\logpage{[ 7, 3, 6 ]}\nobreak1533\hyperdef{L}{X7F542C0880E1598D}{}1534{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ClassGroup({\mdseries\slshape morph})\index{ClassGroup@\texttt{ClassGroup}!for toric morphisms}1535\label{ClassGroup:for toric morphisms}1536}\hfill{\scriptsize (attribute)}}\\1537\textbf{\indent Returns:\ }1538a morphism1539154015411542Returns the associated morphism between the class groups of source and range1543of the morphism \mbox{\texttt{\mdseries\slshape morph}} }1544154515461547\subsection{\textcolor{Chapter }{MorphismOnCartierDivisorGroup}}1548\logpage{[ 7, 3, 7 ]}\nobreak1549\hyperdef{L}{X782D88777AA3E1F4}{}1550{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MorphismOnCartierDivisorGroup({\mdseries\slshape morph})\index{MorphismOnCartierDivisorGroup@\texttt{MorphismOnCartierDivisorGroup}}1551\label{MorphismOnCartierDivisorGroup}1552}\hfill{\scriptsize (attribute)}}\\1553\textbf{\indent Returns:\ }1554a morphism1555155615571558Returns the associated morphism between the Cartier divisor groups of source1559and range of the morphism \mbox{\texttt{\mdseries\slshape morph}} }1560156115621563\subsection{\textcolor{Chapter }{PicardGroup (for toric morphisms)}}1564\logpage{[ 7, 3, 8 ]}\nobreak1565\hyperdef{L}{X804B025C873DF32C}{}1566{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PicardGroup({\mdseries\slshape morph})\index{PicardGroup@\texttt{PicardGroup}!for toric morphisms}1567\label{PicardGroup:for toric morphisms}1568}\hfill{\scriptsize (attribute)}}\\1569\textbf{\indent Returns:\ }1570a morphism1571157215731574Returns the associated morphism between the class groups of source and range1575of the morphism \mbox{\texttt{\mdseries\slshape morph}} }15761577}157815791580\section{\textcolor{Chapter }{Toric morphisms: Methods}}\label{Morphisms:Methods}1581\logpage{[ 7, 4, 0 ]}1582\hyperdef{L}{X7DE931AA84720706}{}1583{158415851586\subsection{\textcolor{Chapter }{UnderlyingListList}}1587\logpage{[ 7, 4, 1 ]}\nobreak1588\hyperdef{L}{X7FE514BB782DD216}{}1589{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingListList({\mdseries\slshape morph})\index{UnderlyingListList@\texttt{UnderlyingListList}}1590\label{UnderlyingListList}1591}\hfill{\scriptsize (attribute)}}\\1592\textbf{\indent Returns:\ }1593a list1594159515961597Returns a list of list which represents the grid homomorphism. }15981599}160016011602\section{\textcolor{Chapter }{Toric morphisms: Constructors}}\label{Morphisms:Constructors}1603\logpage{[ 7, 5, 0 ]}1604\hyperdef{L}{X7D94D43D8463F158}{}1605{160616071608\subsection{\textcolor{Chapter }{ToricMorphism (for a source and a matrix)}}1609\logpage{[ 7, 5, 1 ]}\nobreak1610\hyperdef{L}{X7B53B2C67B98043E}{}1611{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricMorphism({\mdseries\slshape vari, lis})\index{ToricMorphism@\texttt{ToricMorphism}!for a source and a matrix}1612\label{ToricMorphism:for a source and a matrix}1613}\hfill{\scriptsize (operation)}}\\1614\textbf{\indent Returns:\ }1615a morphism1616161716181619Returns the toric morphism with source \mbox{\texttt{\mdseries\slshape vari}} which is represented by the matrix \mbox{\texttt{\mdseries\slshape lis}}. The range is set to the image. }1620162116221623\subsection{\textcolor{Chapter }{ToricMorphism (for a source, matrix and target)}}1624\logpage{[ 7, 5, 2 ]}\nobreak1625\hyperdef{L}{X7AC924D486FADC47}{}1626{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricMorphism({\mdseries\slshape vari, lis, vari2})\index{ToricMorphism@\texttt{ToricMorphism}!for a source, matrix and target}1627\label{ToricMorphism:for a source, matrix and target}1628}\hfill{\scriptsize (operation)}}\\1629\textbf{\indent Returns:\ }1630a morphism1631163216331634Returns the toric morphism with source \mbox{\texttt{\mdseries\slshape vari}} and range \mbox{\texttt{\mdseries\slshape vari2}} which is represented by the matrix \mbox{\texttt{\mdseries\slshape lis}}. }16351636}163716381639\section{\textcolor{Chapter }{Toric morphisms: Examples}}\label{Morphisms:Examples}1640\logpage{[ 7, 6, 0 ]}1641\hyperdef{L}{X83CE579A7B2021DE}{}1642{16431644\subsection{\textcolor{Chapter }{Morphism between toric varieties and their class groups}}\label{MorphismExample}1645\logpage{[ 7, 6, 1 ]}1646\hyperdef{L}{X7D1DD8EA8098C432}{}1647{16481649\begin{Verbatim}[commandchars=!@E,fontsize=\small,frame=single,label=Example]1650!gapprompt@gap>E !gapinput@P1 := Polytope([[0],[1]]);E1651<A polytope in |R^1>1652!gapprompt@gap>E !gapinput@P2 := Polytope([[0,0],[0,1],[1,0]]);E1653<A polytope in |R^2>1654!gapprompt@gap>E !gapinput@P1 := ToricVariety( P1 );E1655<A projective toric variety of dimension 1>1656!gapprompt@gap>E !gapinput@P2 := ToricVariety( P2 );E1657<A projective toric variety of dimension 2>1658!gapprompt@gap>E !gapinput@P1P2 := P1*P2;E1659<A projective toric variety of dimension 31660which is a product of 2 toric varieties>1661!gapprompt@gap>E !gapinput@ClassGroup( P1 );E1662<A non-torsion left module presented by 1 relation for 2 generators>1663!gapprompt@gap>E !gapinput@Display(ByASmallerPresentation(last));E1664Z^(1 x 1)1665!gapprompt@gap>E !gapinput@ClassGroup( P2 );E1666<A non-torsion left module presented by 2 relations for 3 generators>1667!gapprompt@gap>E !gapinput@Display(ByASmallerPresentation(last));E1668Z^(1 x 1)1669!gapprompt@gap>E !gapinput@ClassGroup( P1P2 );E1670<A free left module of rank 2 on free generators>1671!gapprompt@gap>E !gapinput@Display( last );E1672Z^(1 x 2)1673!gapprompt@gap>E !gapinput@PicardGroup( P1P2 );E1674<A free left module of rank 2 on free generators>1675!gapprompt@gap>E !gapinput@P1P2;E1676<A projective smooth toric variety of dimension 31677which is a product of 2 toric varieties>1678!gapprompt@gap>E !gapinput@P2P1:=P2*P1;E1679<A projective toric variety of dimension 31680which is a product of 2 toric varieties>1681!gapprompt@gap>E !gapinput@M := [[0,0,1],[1,0,0],[0,1,0]];E1682[ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ]1683!gapprompt@gap>E !gapinput@M := ToricMorphism(P1P2,M,P2P1);E1684<A "homomorphism" of right objects>1685!gapprompt@gap>E !gapinput@IsMorphism(M);E1686true1687!gapprompt@gap>E !gapinput@ClassGroup(M);E1688<A homomorphism of left modules>1689!gapprompt@gap>E !gapinput@Display(last);E1690[ [ 0, 1 ],1691[ 1, 0 ] ]16921693the map is currently represented by the above 2 x 2 matrix1694!gapprompt@gap>E !gapinput@ByASmallerPresentation(ClassGroup(M));E1695<A non-zero homomorphism of left modules>1696!gapprompt@gap>E !gapinput@Display(last);E1697[ [ 0, 1 ],1698[ 1, 0 ] ]16991700the map is currently represented by the above 2 x 2 matrix1701\end{Verbatim}1702}17031704}17051706}170717081709\chapter{\textcolor{Chapter }{Toric divisors}}\label{Divisors}1710\logpage{[ 8, 0, 0 ]}1711\hyperdef{L}{X7FDB76897833225A}{}1712{17131714\section{\textcolor{Chapter }{Toric divisors: Category and Representations}}\label{Divisors:Category}1715\logpage{[ 8, 1, 0 ]}1716\hyperdef{L}{X7F19CA2285A48A77}{}1717{171817191720\subsection{\textcolor{Chapter }{IsToricDivisor}}1721\logpage{[ 8, 1, 1 ]}\nobreak1722\hyperdef{L}{X8664662078263B5A}{}1723{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsToricDivisor({\mdseries\slshape M})\index{IsToricDivisor@\texttt{IsToricDivisor}}1724\label{IsToricDivisor}1725}\hfill{\scriptsize (Category)}}\\1726\textbf{\indent Returns:\ }1727\texttt{true} or \texttt{false}1728172917301731The \textsf{GAP} category of torus invariant Weil divisors. }17321733}173417351736\section{\textcolor{Chapter }{Toric divisors: Properties}}\label{Divisors:Properties}1737\logpage{[ 8, 2, 0 ]}1738\hyperdef{L}{X7E508A068393A363}{}1739{174017411742\subsection{\textcolor{Chapter }{IsCartier}}1743\logpage{[ 8, 2, 1 ]}\nobreak1744\hyperdef{L}{X7E721696878A61F4}{}1745{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsCartier({\mdseries\slshape divi})\index{IsCartier@\texttt{IsCartier}}1746\label{IsCartier}1747}\hfill{\scriptsize (property)}}\\1748\textbf{\indent Returns:\ }1749\texttt{true} or \texttt{false}1750175117521753Checks if the torus invariant Weil divisor \mbox{\texttt{\mdseries\slshape divi}} is Cartier i.e. if it is locally principal. }1754175517561757\subsection{\textcolor{Chapter }{IsPrincipal}}1758\logpage{[ 8, 2, 2 ]}\nobreak1759\hyperdef{L}{X84DE6ECE85F7D2F2}{}1760{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsPrincipal({\mdseries\slshape divi})\index{IsPrincipal@\texttt{IsPrincipal}}1761\label{IsPrincipal}1762}\hfill{\scriptsize (property)}}\\1763\textbf{\indent Returns:\ }1764\texttt{true} or \texttt{false}1765176617671768Checks if the torus invariant Weil divisor \mbox{\texttt{\mdseries\slshape divi}} is principal which in the toric invariant case means that it is the divisor of1769a character. }1770177117721773\subsection{\textcolor{Chapter }{IsPrimedivisor}}1774\logpage{[ 8, 2, 3 ]}\nobreak1775\hyperdef{L}{X844EFF227C868438}{}1776{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsPrimedivisor({\mdseries\slshape divi})\index{IsPrimedivisor@\texttt{IsPrimedivisor}}1777\label{IsPrimedivisor}1778}\hfill{\scriptsize (property)}}\\1779\textbf{\indent Returns:\ }1780\texttt{true} or \texttt{false}1781178217831784Checks if the Weil divisor \mbox{\texttt{\mdseries\slshape divi}} represents a prime divisor, i.e. if it is a standard generator of the divisor1785group. }1786178717881789\subsection{\textcolor{Chapter }{IsBasepointFree}}1790\logpage{[ 8, 2, 4 ]}\nobreak1791\hyperdef{L}{X7AB6B5C77DFB740B}{}1792{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsBasepointFree({\mdseries\slshape divi})\index{IsBasepointFree@\texttt{IsBasepointFree}}1793\label{IsBasepointFree}1794}\hfill{\scriptsize (property)}}\\1795\textbf{\indent Returns:\ }1796\texttt{true} or \texttt{false}1797179817991800Checks if the divisor \mbox{\texttt{\mdseries\slshape divi}} is basepoint free. What else? }1801180218031804\subsection{\textcolor{Chapter }{IsAmple}}1805\logpage{[ 8, 2, 5 ]}\nobreak1806\hyperdef{L}{X7F5062AA844AEC55}{}1807{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsAmple({\mdseries\slshape divi})\index{IsAmple@\texttt{IsAmple}}1808\label{IsAmple}1809}\hfill{\scriptsize (property)}}\\1810\textbf{\indent Returns:\ }1811\texttt{true} or \texttt{false}1812181318141815Checks if the divisor \mbox{\texttt{\mdseries\slshape divi}} is ample, i.e. if it is colored red, yellow and green. }1816181718181819\subsection{\textcolor{Chapter }{IsVeryAmple}}1820\logpage{[ 8, 2, 6 ]}\nobreak1821\hyperdef{L}{X80A58559802BB02E}{}1822{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsVeryAmple({\mdseries\slshape divi})\index{IsVeryAmple@\texttt{IsVeryAmple}}1823\label{IsVeryAmple}1824}\hfill{\scriptsize (property)}}\\1825\textbf{\indent Returns:\ }1826\texttt{true} or \texttt{false}1827182818291830Checks if the divisor \mbox{\texttt{\mdseries\slshape divi}} is very ample. }18311832}183318341835\section{\textcolor{Chapter }{Toric divisors: Attributes}}\label{Divisors:Attributes}1836\logpage{[ 8, 3, 0 ]}1837\hyperdef{L}{X853500FD794001B8}{}1838{183918401841\subsection{\textcolor{Chapter }{CartierData}}1842\logpage{[ 8, 3, 1 ]}\nobreak1843\hyperdef{L}{X7F546017860701EA}{}1844{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CartierData({\mdseries\slshape divi})\index{CartierData@\texttt{CartierData}}1845\label{CartierData}1846}\hfill{\scriptsize (attribute)}}\\1847\textbf{\indent Returns:\ }1848a list1849185018511852Returns the Cartier data of the divisor \mbox{\texttt{\mdseries\slshape divi}}, if it is Cartier, and fails otherwise. }1853185418551856\subsection{\textcolor{Chapter }{CharacterOfPrincipalDivisor}}1857\logpage{[ 8, 3, 2 ]}\nobreak1858\hyperdef{L}{X796415858436B32D}{}1859{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CharacterOfPrincipalDivisor({\mdseries\slshape divi})\index{CharacterOfPrincipalDivisor@\texttt{CharacterOfPrincipalDivisor}}1860\label{CharacterOfPrincipalDivisor}1861}\hfill{\scriptsize (attribute)}}\\1862\textbf{\indent Returns:\ }1863an element1864186518661867Returns the character corresponding to principal divisor \mbox{\texttt{\mdseries\slshape divi}}. }1868186918701871\subsection{\textcolor{Chapter }{ToricVarietyOfDivisor}}1872\logpage{[ 8, 3, 3 ]}\nobreak1873\hyperdef{L}{X80FA3ADA81640191}{}1874{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricVarietyOfDivisor({\mdseries\slshape divi})\index{ToricVarietyOfDivisor@\texttt{ToricVarietyOfDivisor}}1875\label{ToricVarietyOfDivisor}1876}\hfill{\scriptsize (attribute)}}\\1877\textbf{\indent Returns:\ }1878a variety1879188018811882Returns the closure of the torus orbit corresponding to the prime divisor \mbox{\texttt{\mdseries\slshape divi}}. Not implemented for other divisors. Maybe we should add the support here. Is1883this even a toric variety? Exercise left to the reader. }1884188518861887\subsection{\textcolor{Chapter }{ClassOfDivisor}}1888\logpage{[ 8, 3, 4 ]}\nobreak1889\hyperdef{L}{X7C3691B4816CF3E9}{}1890{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ClassOfDivisor({\mdseries\slshape divi})\index{ClassOfDivisor@\texttt{ClassOfDivisor}}1891\label{ClassOfDivisor}1892}\hfill{\scriptsize (attribute)}}\\1893\textbf{\indent Returns:\ }1894an element1895189618971898Returns the class group element corresponding to the divisor \mbox{\texttt{\mdseries\slshape divi}}. }1899190019011902\subsection{\textcolor{Chapter }{PolytopeOfDivisor}}1903\logpage{[ 8, 3, 5 ]}\nobreak1904\hyperdef{L}{X85ED82DC79E2F1CE}{}1905{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PolytopeOfDivisor({\mdseries\slshape divi})\index{PolytopeOfDivisor@\texttt{PolytopeOfDivisor}}1906\label{PolytopeOfDivisor}1907}\hfill{\scriptsize (attribute)}}\\1908\textbf{\indent Returns:\ }1909a polytope1910191119121913Returns the polytope corresponding to the divisor \mbox{\texttt{\mdseries\slshape divi}}. }1914191519161917\subsection{\textcolor{Chapter }{BasisOfGlobalSections}}1918\logpage{[ 8, 3, 6 ]}\nobreak1919\hyperdef{L}{X7A7853288166B329}{}1920{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{BasisOfGlobalSections({\mdseries\slshape divi})\index{BasisOfGlobalSections@\texttt{BasisOfGlobalSections}}1921\label{BasisOfGlobalSections}1922}\hfill{\scriptsize (attribute)}}\\1923\textbf{\indent Returns:\ }1924a list1925192619271928Returns a basis of the global section module of the quasi-coherent sheaf of1929the divisor \mbox{\texttt{\mdseries\slshape divi}}. }1930193119321933\subsection{\textcolor{Chapter }{IntegerForWhichIsSureVeryAmple}}1934\logpage{[ 8, 3, 7 ]}\nobreak1935\hyperdef{L}{X87DA4EEA824F4175}{}1936{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IntegerForWhichIsSureVeryAmple({\mdseries\slshape divi})\index{IntegerForWhichIsSureVeryAmple@\texttt{IntegerForWhichIsSureVeryAmple}}1937\label{IntegerForWhichIsSureVeryAmple}1938}\hfill{\scriptsize (attribute)}}\\1939\textbf{\indent Returns:\ }1940an integer1941194219431944Returns an integer which, to be multiplied with the ample divisor \mbox{\texttt{\mdseries\slshape divi}}, someone gets a very ample divisor. }1945194619471948\subsection{\textcolor{Chapter }{AmbientToricVariety (for toric divisors)}}1949\logpage{[ 8, 3, 8 ]}\nobreak1950\hyperdef{L}{X809666867CB2FC87}{}1951{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AmbientToricVariety({\mdseries\slshape divi})\index{AmbientToricVariety@\texttt{AmbientToricVariety}!for toric divisors}1952\label{AmbientToricVariety:for toric divisors}1953}\hfill{\scriptsize (attribute)}}\\1954\textbf{\indent Returns:\ }1955a variety1956195719581959Returns the containing variety of the prime divisors of the divisor \mbox{\texttt{\mdseries\slshape divi}}. }1960196119621963\subsection{\textcolor{Chapter }{UnderlyingGroupElement}}1964\logpage{[ 8, 3, 9 ]}\nobreak1965\hyperdef{L}{X7D42C40B7B4B06E0}{}1966{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingGroupElement({\mdseries\slshape divi})\index{UnderlyingGroupElement@\texttt{UnderlyingGroupElement}}1967\label{UnderlyingGroupElement}1968}\hfill{\scriptsize (attribute)}}\\1969\textbf{\indent Returns:\ }1970an element1971197219731974Returns an element which represents the divisor \mbox{\texttt{\mdseries\slshape divi}} in the Weil group. }1975197619771978\subsection{\textcolor{Chapter }{UnderlyingToricVariety (for prime divisors)}}1979\logpage{[ 8, 3, 10 ]}\nobreak1980\hyperdef{L}{X81DF09097AEA7A0D}{}1981{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingToricVariety({\mdseries\slshape divi})\index{UnderlyingToricVariety@\texttt{UnderlyingToricVariety}!for prime divisors}1982\label{UnderlyingToricVariety:for prime divisors}1983}\hfill{\scriptsize (attribute)}}\\1984\textbf{\indent Returns:\ }1985a variety1986198719881989Returns the closure of the torus orbit corresponding to the prime divisor \mbox{\texttt{\mdseries\slshape divi}}. Not implemented for other divisors. Maybe we should add the support here. Is1990this even a toric variety? Exercise left to the reader. }1991199219931994\subsection{\textcolor{Chapter }{DegreeOfDivisor}}1995\logpage{[ 8, 3, 11 ]}\nobreak1996\hyperdef{L}{X7A346588871296FB}{}1997{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DegreeOfDivisor({\mdseries\slshape divi})\index{DegreeOfDivisor@\texttt{DegreeOfDivisor}}1998\label{DegreeOfDivisor}1999}\hfill{\scriptsize (attribute)}}\\2000\textbf{\indent Returns:\ }2001an integer2002200320042005Returns the degree of the divisor \mbox{\texttt{\mdseries\slshape divi}}. }2006200720082009\subsection{\textcolor{Chapter }{MonomsOfCoxRingOfDegree}}2010\logpage{[ 8, 3, 12 ]}\nobreak2011\hyperdef{L}{X838F54D8817F6066}{}2012{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MonomsOfCoxRingOfDegree({\mdseries\slshape divi})\index{MonomsOfCoxRingOfDegree@\texttt{MonomsOfCoxRingOfDegree}}2013\label{MonomsOfCoxRingOfDegree}2014}\hfill{\scriptsize (attribute)}}\\2015\textbf{\indent Returns:\ }2016a list2017201820192020Returns the variety corresponding to the polytope of the divisor \mbox{\texttt{\mdseries\slshape divi}}. }2021202220232024\subsection{\textcolor{Chapter }{CoxRingOfTargetOfDivisorMorphism}}2025\logpage{[ 8, 3, 13 ]}\nobreak2026\hyperdef{L}{X831C20A585952B08}{}2027{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoxRingOfTargetOfDivisorMorphism({\mdseries\slshape divi})\index{CoxRingOfTargetOfDivisorMorphism@\texttt{CoxRingOfTargetOfDivisorMorphism}}2028\label{CoxRingOfTargetOfDivisorMorphism}2029}\hfill{\scriptsize (attribute)}}\\2030\textbf{\indent Returns:\ }2031a ring2032203320342035A basepoint free divisor \mbox{\texttt{\mdseries\slshape divi}} defines a map from its ambient variety in a projective space. This method2036returns the cox ring of such a projective space. }2037203820392040\subsection{\textcolor{Chapter }{RingMorphismOfDivisor}}2041\logpage{[ 8, 3, 14 ]}\nobreak2042\hyperdef{L}{X786F05507F8026D5}{}2043{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RingMorphismOfDivisor({\mdseries\slshape divi})\index{RingMorphismOfDivisor@\texttt{RingMorphismOfDivisor}}2044\label{RingMorphismOfDivisor}2045}\hfill{\scriptsize (attribute)}}\\2046\textbf{\indent Returns:\ }2047a ring2048204920502051A basepoint free divisor \mbox{\texttt{\mdseries\slshape divi}} defines a map from its ambient variety in a projective space. This method2052returns the morphism between the cox ring of this projective space to the cox2053ring of the ambient variety of \mbox{\texttt{\mdseries\slshape divi}}. }20542055}205620572058\section{\textcolor{Chapter }{Toric divisors: Methods}}\label{divisors:Methods}2059\logpage{[ 8, 4, 0 ]}2060\hyperdef{L}{X868C3EF185DDF025}{}2061{206220632064\subsection{\textcolor{Chapter }{VeryAmpleMultiple}}2065\logpage{[ 8, 4, 1 ]}\nobreak2066\hyperdef{L}{X79410AC7794A3EE7}{}2067{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{VeryAmpleMultiple({\mdseries\slshape divi})\index{VeryAmpleMultiple@\texttt{VeryAmpleMultiple}}2068\label{VeryAmpleMultiple}2069}\hfill{\scriptsize (operation)}}\\2070\textbf{\indent Returns:\ }2071a divisor2072207320742075Returns a very ample multiple of the ample divisor \mbox{\texttt{\mdseries\slshape divi}}. Will fail if divisor is not ample. }2076207720782079\subsection{\textcolor{Chapter }{CharactersForClosedEmbedding}}2080\logpage{[ 8, 4, 2 ]}\nobreak2081\hyperdef{L}{X853616578245BF1A}{}2082{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CharactersForClosedEmbedding({\mdseries\slshape divi})\index{CharactersForClosedEmbedding@\texttt{CharactersForClosedEmbedding}}2083\label{CharactersForClosedEmbedding}2084}\hfill{\scriptsize (operation)}}\\2085\textbf{\indent Returns:\ }2086a list2087208820892090Returns characters for closed embedding defined via the ample divisor \mbox{\texttt{\mdseries\slshape divi}}. Fails if divisor is not ample. }2091209220932094\subsection{\textcolor{Chapter }{MonomsOfCoxRingOfDegree (for an homalg element)}}2095\logpage{[ 8, 4, 3 ]}\nobreak2096\hyperdef{L}{X7D890CF4845178FE}{}2097{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MonomsOfCoxRingOfDegree({\mdseries\slshape vari, elem})\index{MonomsOfCoxRingOfDegree@\texttt{MonomsOfCoxRingOfDegree}!for an homalg element}2098\label{MonomsOfCoxRingOfDegree:for an homalg element}2099}\hfill{\scriptsize (operation)}}\\2100\textbf{\indent Returns:\ }2101a list2102210321042105Returns the monoms of the Cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}} with degree to the class group element \mbox{\texttt{\mdseries\slshape elem}}. The variable \mbox{\texttt{\mdseries\slshape elem}} can also be a list. }2106210721082109\subsection{\textcolor{Chapter }{DivisorOfGivenClass}}2110\logpage{[ 8, 4, 4 ]}\nobreak2111\hyperdef{L}{X7E66CB878743D6DF}{}2112{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DivisorOfGivenClass({\mdseries\slshape vari, elem})\index{DivisorOfGivenClass@\texttt{DivisorOfGivenClass}}2113\label{DivisorOfGivenClass}2114}\hfill{\scriptsize (operation)}}\\2115\textbf{\indent Returns:\ }2116a list2117211821192120Computes a divisor of the variety \mbox{\texttt{\mdseries\slshape divi}} which is member of the divisor class presented by \mbox{\texttt{\mdseries\slshape elem}}. The variable \mbox{\texttt{\mdseries\slshape elem}} can be a homalg element or a list presenting an element. }2121212221232124\subsection{\textcolor{Chapter }{AddDivisorToItsAmbientVariety}}2125\logpage{[ 8, 4, 5 ]}\nobreak2126\hyperdef{L}{X7A19D0127ECE5EE1}{}2127{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AddDivisorToItsAmbientVariety({\mdseries\slshape divi})\index{AddDivisorToItsAmbientVariety@\texttt{AddDivisorToItsAmbientVariety}}2128\label{AddDivisorToItsAmbientVariety}2129}\hfill{\scriptsize (operation)}}\\2130\textbf{\indent Returns:\ }21312132213321342135Adds the divisor \mbox{\texttt{\mdseries\slshape divi}} to the Weil divisor list of its ambient variety. }2136213721382139\subsection{\textcolor{Chapter }{Polytope (for toric divisors)}}2140\logpage{[ 8, 4, 6 ]}\nobreak2141\hyperdef{L}{X7BA1C5A27CC75C38}{}2142{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Polytope({\mdseries\slshape divi})\index{Polytope@\texttt{Polytope}!for toric divisors}2143\label{Polytope:for toric divisors}2144}\hfill{\scriptsize (operation)}}\\2145\textbf{\indent Returns:\ }2146a polytope2147214821492150Returns the polytope of the divisor \mbox{\texttt{\mdseries\slshape divi}}. Another name for PolytopeOfDivisor for compatibility and shortness. }2151215221532154\subsection{\textcolor{Chapter }{+}}2155\logpage{[ 8, 4, 7 ]}\nobreak2156\hyperdef{L}{X7F2703417F270341}{}2157{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{+({\mdseries\slshape divi1, divi2})\index{+@\texttt{+}}2158\label{+}2159}\hfill{\scriptsize (operation)}}\\2160\textbf{\indent Returns:\ }2161a divisor2162216321642165Returns the sum of the divisors \mbox{\texttt{\mdseries\slshape divi1}} and \mbox{\texttt{\mdseries\slshape divi2}}. }2166216721682169\subsection{\textcolor{Chapter }{-}}2170\logpage{[ 8, 4, 8 ]}\nobreak2171\hyperdef{L}{X81B1391281B13912}{}2172{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{-({\mdseries\slshape divi1, divi2})\index{-@\texttt{-}}2173\label{-}2174}\hfill{\scriptsize (operation)}}\\2175\textbf{\indent Returns:\ }2176a divisor2177217821792180Returns the divisor \mbox{\texttt{\mdseries\slshape divi1}} minus \mbox{\texttt{\mdseries\slshape divi2}}. }2181218221832184\subsection{\textcolor{Chapter }{* (for toric divisors)}}2185\logpage{[ 8, 4, 9 ]}\nobreak2186\hyperdef{L}{X7A14A08D79AABCC5}{}2187{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{*({\mdseries\slshape k, divi})\index{*@\texttt{*}!for toric divisors}2188\label{*:for toric divisors}2189}\hfill{\scriptsize (operation)}}\\2190\textbf{\indent Returns:\ }2191a divisor2192219321942195Returns \mbox{\texttt{\mdseries\slshape k}} times the divisor \mbox{\texttt{\mdseries\slshape divi}}. }21962197}219821992200\section{\textcolor{Chapter }{Toric divisors: Constructors}}\label{Divisors:Constructors}2201\logpage{[ 8, 5, 0 ]}2202\hyperdef{L}{X863E167D799CBE31}{}2203{220422052206\subsection{\textcolor{Chapter }{DivisorOfCharacter}}2207\logpage{[ 8, 5, 1 ]}\nobreak2208\hyperdef{L}{X7A1062647B359F8A}{}2209{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DivisorOfCharacter({\mdseries\slshape elem, vari})\index{DivisorOfCharacter@\texttt{DivisorOfCharacter}}2210\label{DivisorOfCharacter}2211}\hfill{\scriptsize (operation)}}\\2212\textbf{\indent Returns:\ }2213a divisor2214221522162217Returns the divisor of the toric variety \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the character \mbox{\texttt{\mdseries\slshape elem}}. }2218221922202221\subsection{\textcolor{Chapter }{DivisorOfCharacter (for a list of integers)}}2222\logpage{[ 8, 5, 2 ]}\nobreak2223\hyperdef{L}{X7C2AF9FC7AEA18BE}{}2224{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DivisorOfCharacter({\mdseries\slshape lis, vari})\index{DivisorOfCharacter@\texttt{DivisorOfCharacter}!for a list of integers}2225\label{DivisorOfCharacter:for a list of integers}2226}\hfill{\scriptsize (operation)}}\\2227\textbf{\indent Returns:\ }2228a divisor2229223022312232Returns the divisor of the toric variety \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the character which is created by the list \mbox{\texttt{\mdseries\slshape lis}}. }2233223422352236\subsection{\textcolor{Chapter }{CreateDivisor (for a homalg element)}}2237\logpage{[ 8, 5, 3 ]}\nobreak2238\hyperdef{L}{X7F24DB367B7BAAB4}{}2239{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CreateDivisor({\mdseries\slshape elem, vari})\index{CreateDivisor@\texttt{CreateDivisor}!for a homalg element}2240\label{CreateDivisor:for a homalg element}2241}\hfill{\scriptsize (operation)}}\\2242\textbf{\indent Returns:\ }2243a divisor2244224522462247Returns the divisor of the toric variety \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the Weil group element \mbox{\texttt{\mdseries\slshape elem}}. }2248224922502251\subsection{\textcolor{Chapter }{CreateDivisor (for a list of integers)}}2252\logpage{[ 8, 5, 4 ]}\nobreak2253\hyperdef{L}{X87477D82832DDE3A}{}2254{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CreateDivisor({\mdseries\slshape lis, vari})\index{CreateDivisor@\texttt{CreateDivisor}!for a list of integers}2255\label{CreateDivisor:for a list of integers}2256}\hfill{\scriptsize (operation)}}\\2257\textbf{\indent Returns:\ }2258a divisor2259226022612262Returns the divisor of the toric variety \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the Weil group element which is created by the list \mbox{\texttt{\mdseries\slshape lis}}. }22632264}226522662267\section{\textcolor{Chapter }{Toric divisors: Examples}}\label{Divisors:Examples}2268\logpage{[ 8, 6, 0 ]}2269\hyperdef{L}{X7FE84D6F87076DA0}{}2270{22712272\subsection{\textcolor{Chapter }{Divisors on a toric variety}}\label{DivisorsExampleSubsection}2273\logpage{[ 8, 6, 1 ]}2274\hyperdef{L}{X7A7080E77E93A36F}{}2275{22762277\begin{Verbatim}[commandchars=!@J,fontsize=\small,frame=single,label=Example]2278!gapprompt@gap>J !gapinput@H7 := Fan( [[0,1],[1,0],[0,-1],[-1,7]],[[1,2],[2,3],[3,4],[4,1]] );J2279<A fan in |R^2>2280!gapprompt@gap>J !gapinput@H7 := ToricVariety( H7 );J2281<A toric variety of dimension 2>2282!gapprompt@gap>J !gapinput@P := TorusInvariantPrimeDivisors( H7 );J2283[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,2284<A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>,2285<A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,2286<A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]2287!gapprompt@gap>J !gapinput@D := P[3]+P[4];J2288<A divisor of a toric variety with coordinates [ 0, 0, 1, 1 ]>2289!gapprompt@gap>J !gapinput@IsBasepointFree(D);J2290true2291!gapprompt@gap>J !gapinput@IsAmple(D);J2292true2293!gapprompt@gap>J !gapinput@CoordinateRingOfTorus(H7,"x");J2294Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )2295!gapprompt@gap>J !gapinput@Polytope(D);J2296<A polytope in |R^2>2297!gapprompt@gap>J !gapinput@CharactersForClosedEmbedding(D);J2298[ |[ 1 ]|, |[ x2 ]|, |[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|,2299|[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|,2300|[ x1^6*x2 ]|, |[ x1^7*x2 ]|, |[ x1^8*x2 ]| ]2301!gapprompt@gap>J !gapinput@CoxRingOfTargetOfDivisorMorphism(D);J2302Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]2303(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])2304!gapprompt@gap>J !gapinput@RingMorphismOfDivisor(D);J2305<A "homomorphism" of rings>2306!gapprompt@gap>J !gapinput@Display(last);J2307Q[x_1,x_2,x_3,x_4]2308(weights: [ [ 0, 0, 1, -7 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ])2309^2310|2311[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,2312x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3,2313x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]2314|2315|2316Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]2317(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])2318!gapprompt@gap>J !gapinput@ByASmallerPresentation(ClassGroup(H7));J2319<A free left module of rank 2 on free generators>2320!gapprompt@gap>J !gapinput@Display(RingMorphismOfDivisor(D));J2321Q[x_1,x_2,x_3,x_4]2322(weights: [ [ 1, -7 ], [ 0, 1 ], [ 1, 0 ], [ 0, 1 ] ])2323^2324|2325[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,2326x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3,2327x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]2328|2329|2330Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]2331(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])2332!gapprompt@gap>J !gapinput@MonomsOfCoxRingOfDegree(D);J2333[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,2334x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3,2335x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]2336!gapprompt@gap>J !gapinput@D2:=D-2*P[2];J2337<A divisor of a toric variety with coordinates [ 0, -2, 1, 1 ]>2338!gapprompt@gap>J !gapinput@IsBasepointFree(D2);J2339false2340!gapprompt@gap>J !gapinput@IsAmple(D2);J2341false2342\end{Verbatim}2343}23442345}23462347}23482349\def\indexname{Index\logpage{[ "Ind", 0, 0 ]}2350\hyperdef{L}{X83A0356F839C696F}{}2351}23522353\cleardoublepage2354\phantomsection2355\addcontentsline{toc}{chapter}{Index}235623572358\printindex23592360\newpage2361\immediate\write\pagenrlog{["End"], \arabic{page}];}2362\immediate\closeout\pagenrlog2363\end{document}236423652366