CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
% generated by GAPDoc2LaTeX from XML source (Frank Luebeck)
2
\documentclass[a4paper,11pt]{report}
3
4
\usepackage{a4wide}
5
\sloppy
6
\pagestyle{myheadings}
7
\usepackage{amssymb}
8
\usepackage[utf8]{inputenc}
9
\usepackage{makeidx}
10
\makeindex
11
\usepackage{color}
12
\definecolor{FireBrick}{rgb}{0.5812,0.0074,0.0083}
13
\definecolor{RoyalBlue}{rgb}{0.0236,0.0894,0.6179}
14
\definecolor{RoyalGreen}{rgb}{0.0236,0.6179,0.0894}
15
\definecolor{RoyalRed}{rgb}{0.6179,0.0236,0.0894}
16
\definecolor{LightBlue}{rgb}{0.8544,0.9511,1.0000}
17
\definecolor{Black}{rgb}{0.0,0.0,0.0}
18
19
\definecolor{linkColor}{rgb}{0.0,0.0,0.554}
20
\definecolor{citeColor}{rgb}{0.0,0.0,0.554}
21
\definecolor{fileColor}{rgb}{0.0,0.0,0.554}
22
\definecolor{urlColor}{rgb}{0.0,0.0,0.554}
23
\definecolor{promptColor}{rgb}{0.0,0.0,0.589}
24
\definecolor{brkpromptColor}{rgb}{0.589,0.0,0.0}
25
\definecolor{gapinputColor}{rgb}{0.589,0.0,0.0}
26
\definecolor{gapoutputColor}{rgb}{0.0,0.0,0.0}
27
28
%% for a long time these were red and blue by default,
29
%% now black, but keep variables to overwrite
30
\definecolor{FuncColor}{rgb}{0.0,0.0,0.0}
31
%% strange name because of pdflatex bug:
32
\definecolor{Chapter }{rgb}{0.0,0.0,0.0}
33
\definecolor{DarkOlive}{rgb}{0.1047,0.2412,0.0064}
34
35
36
\usepackage{fancyvrb}
37
38
\usepackage{mathptmx,helvet}
39
\usepackage[T1]{fontenc}
40
\usepackage{textcomp}
41
42
43
\usepackage[
44
pdftex=true,
45
bookmarks=true,
46
a4paper=true,
47
pdftitle={Written with GAPDoc},
48
pdfcreator={LaTeX with hyperref package / GAPDoc},
49
colorlinks=true,
50
backref=page,
51
breaklinks=true,
52
linkcolor=linkColor,
53
citecolor=citeColor,
54
filecolor=fileColor,
55
urlcolor=urlColor,
56
pdfpagemode={UseNone},
57
]{hyperref}
58
59
\newcommand{\maintitlesize}{\fontsize{50}{55}\selectfont}
60
61
% write page numbers to a .pnr log file for online help
62
\newwrite\pagenrlog
63
\immediate\openout\pagenrlog =\jobname.pnr
64
\immediate\write\pagenrlog{PAGENRS := [}
65
\newcommand{\logpage}[1]{\protect\write\pagenrlog{#1, \thepage,}}
66
%% were never documented, give conflicts with some additional packages
67
68
\newcommand{\GAP}{\textsf{GAP}}
69
70
%% nicer description environments, allows long labels
71
\usepackage{enumitem}
72
\setdescription{style=nextline}
73
74
%% depth of toc
75
\setcounter{tocdepth}{1}
76
77
78
79
80
81
%% command for ColorPrompt style examples
82
\newcommand{\gapprompt}[1]{\color{promptColor}{\bfseries #1}}
83
\newcommand{\gapbrkprompt}[1]{\color{brkpromptColor}{\bfseries #1}}
84
\newcommand{\gapinput}[1]{\color{gapinputColor}{#1}}
85
86
87
\begin{document}
88
89
\logpage{[ 0, 0, 0 ]}
90
\begin{titlepage}
91
\mbox{}\vfill
92
93
\begin{center}{\maintitlesize \textbf{\textsf{ToricVarieties}\mbox{}}}\\
94
\vfill
95
96
\hypersetup{pdftitle=\textsf{ToricVarieties}}
97
\markright{\scriptsize \mbox{}\hfill \textsf{ToricVarieties} \hfill\mbox{}}
98
{\Huge \textbf{A \textsf{GAP} package for handling toric varieties.\mbox{}}}\\
99
\vfill
100
101
{\Huge Version 2012.12.22\mbox{}}\\[1cm]
102
{October 2012\mbox{}}\\[1cm]
103
\mbox{}\\[2cm]
104
{\Large \textbf{Sebastian Gutsche\\
105
\mbox{}}}\\
106
\hypersetup{pdfauthor=Sebastian Gutsche\\
107
}
108
\mbox{}\\[2cm]
109
\begin{minipage}{12cm}\noindent
110
\\
111
\\
112
This manual is best viewed as an \textsc{HTML} document. An \textsc{offline} version should be included in the documentation subfolder of the package. \\
113
\\
114
\end{minipage}
115
116
\end{center}\vfill
117
118
\mbox{}\\
119
{\mbox{}\\
120
\small \noindent \textbf{Sebastian Gutsche\\
121
} Email: \href{mailto://sebastian.gutsche@rwth-aachen.de} {\texttt{sebastian.gutsche@rwth-aachen.de}}\\
122
Homepage: \href{http://wwwb.math.rwth-aachen.de/~gutsche} {\texttt{http://wwwb.math.rwth-aachen.de/\texttt{\symbol{126}}gutsche}}\\
123
Address: \begin{minipage}[t]{8cm}\noindent
124
Lehrstuhl B f{\"u}r Mathematik, RWTH Aachen, Templergraben 64, 52056 Aachen,
125
Germany \end{minipage}
126
}\\
127
\end{titlepage}
128
129
\newpage\setcounter{page}{2}
130
{\small
131
\section*{Copyright}
132
\logpage{[ 0, 0, 1 ]}
133
{\copyright} 2011-2012 by Sebastian Gutsche
134
135
This package may be distributed under the terms and conditions of the GNU
136
Public License Version 2. \mbox{}}\\[1cm]
137
{\small
138
\section*{Acknowledgements}
139
\logpage{[ 0, 0, 2 ]}
140
\mbox{}}\\[1cm]
141
\newpage
142
143
\def\contentsname{Contents\logpage{[ 0, 0, 3 ]}}
144
145
\tableofcontents
146
\newpage
147
148
\index{\textsf{ToricVarieties}}
149
\chapter{\textcolor{Chapter }{Introduction}}\label{intro}
150
\logpage{[ 1, 0, 0 ]}
151
\hyperdef{L}{X7DFB63A97E67C0A1}{}
152
{
153
154
\section{\textcolor{Chapter }{What is the goal of the \textsf{ToricVarieties} package?}}\label{WhyToricVarieties}
155
\logpage{[ 1, 1, 0 ]}
156
\hyperdef{L}{X82D29B587A1E08FF}{}
157
{
158
\textsf{ToricVarieties} provides data structures to handle toric varieties by their commutative
159
algebra structure and by their combinatorics. For combinatorics, it uses the \textsf{Convex} package. Its goal is to provide a suitable framework to work with toric
160
varieties. All combinatorial structures mentioned in this manual are the ones
161
from \textsf{Convex}. }
162
163
}
164
165
166
\chapter{\textcolor{Chapter }{Installation of the \textsf{ToricVarieties} Package}}\label{install}
167
\logpage{[ 2, 0, 0 ]}
168
\hyperdef{L}{X7EC76C1D7F46724F}{}
169
{
170
To install this package just extract the package's archive file to the \textsf{GAP} \texttt{pkg} directory.
171
172
By default the \textsf{ToricVarieties} package is not automatically loaded by \textsf{GAP} when it is installed. You must load the package with \\
173
\\
174
\texttt{LoadPackage}( "ToricVarieties" ); \\
175
\\
176
before its functions become available.
177
178
Please, send me an e-mail if you have any questions, remarks, suggestions,
179
etc. concerning this package. Also, I would be pleased to hear about
180
applications of this package and about any suggestions for new methods to add
181
to the package. \\
182
\\
183
\\
184
Sebastian Gutsche }
185
186
187
\chapter{\textcolor{Chapter }{Toric varieties}}\label{Varieties}
188
\logpage{[ 3, 0, 0 ]}
189
\hyperdef{L}{X866558FA7BC3F2C8}{}
190
{
191
192
\section{\textcolor{Chapter }{Toric variety: Category and Representations}}\label{ToricVariety:Category}
193
\logpage{[ 3, 1, 0 ]}
194
\hyperdef{L}{X8108B9978021989B}{}
195
{
196
197
198
\subsection{\textcolor{Chapter }{IsToricVariety}}
199
\logpage{[ 3, 1, 1 ]}\nobreak
200
\hyperdef{L}{X7A99B0697F11DEB1}{}
201
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsToricVariety({\mdseries\slshape M})\index{IsToricVariety@\texttt{IsToricVariety}}
202
\label{IsToricVariety}
203
}\hfill{\scriptsize (Category)}}\\
204
\textbf{\indent Returns:\ }
205
\texttt{true} or \texttt{false}
206
207
208
209
The \textsf{GAP} category of a toric variety. }
210
211
}
212
213
214
\section{\textcolor{Chapter }{Toric varieties: Properties}}\label{ToricVarieties:Properties}
215
\logpage{[ 3, 2, 0 ]}
216
\hyperdef{L}{X81C5B56F7A5E912E}{}
217
{
218
219
220
\subsection{\textcolor{Chapter }{IsNormalVariety}}
221
\logpage{[ 3, 2, 1 ]}\nobreak
222
\hyperdef{L}{X7D6DF89D7836A3D8}{}
223
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsNormalVariety({\mdseries\slshape vari})\index{IsNormalVariety@\texttt{IsNormalVariety}}
224
\label{IsNormalVariety}
225
}\hfill{\scriptsize (property)}}\\
226
\textbf{\indent Returns:\ }
227
\texttt{true} or \texttt{false}
228
229
230
231
Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is a normal variety. }
232
233
234
235
\subsection{\textcolor{Chapter }{IsAffine}}
236
\logpage{[ 3, 2, 2 ]}\nobreak
237
\hyperdef{L}{X7E2687347A75468E}{}
238
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsAffine({\mdseries\slshape vari})\index{IsAffine@\texttt{IsAffine}}
239
\label{IsAffine}
240
}\hfill{\scriptsize (property)}}\\
241
\textbf{\indent Returns:\ }
242
\texttt{true} or \texttt{false}
243
244
245
246
Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is an affine variety. }
247
248
249
250
\subsection{\textcolor{Chapter }{IsProjective}}
251
\logpage{[ 3, 2, 3 ]}\nobreak
252
\hyperdef{L}{X7EC041A77E7E46D2}{}
253
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsProjective({\mdseries\slshape vari})\index{IsProjective@\texttt{IsProjective}}
254
\label{IsProjective}
255
}\hfill{\scriptsize (property)}}\\
256
\textbf{\indent Returns:\ }
257
\texttt{true} or \texttt{false}
258
259
260
261
Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is a projective variety. }
262
263
264
265
\subsection{\textcolor{Chapter }{IsComplete}}
266
\logpage{[ 3, 2, 4 ]}\nobreak
267
\hyperdef{L}{X7D689F21828A4278}{}
268
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsComplete({\mdseries\slshape vari})\index{IsComplete@\texttt{IsComplete}}
269
\label{IsComplete}
270
}\hfill{\scriptsize (property)}}\\
271
\textbf{\indent Returns:\ }
272
\texttt{true} or \texttt{false}
273
274
275
276
Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is a complete variety. }
277
278
279
280
\subsection{\textcolor{Chapter }{IsSmooth}}
281
\logpage{[ 3, 2, 5 ]}\nobreak
282
\hyperdef{L}{X86CBF5497EC15CFC}{}
283
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSmooth({\mdseries\slshape vari})\index{IsSmooth@\texttt{IsSmooth}}
284
\label{IsSmooth}
285
}\hfill{\scriptsize (property)}}\\
286
\textbf{\indent Returns:\ }
287
\texttt{true} or \texttt{false}
288
289
290
291
Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} is a smooth variety. }
292
293
294
295
\subsection{\textcolor{Chapter }{HasTorusfactor}}
296
\logpage{[ 3, 2, 6 ]}\nobreak
297
\hyperdef{L}{X87B517958002AE71}{}
298
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{HasTorusfactor({\mdseries\slshape vari})\index{HasTorusfactor@\texttt{HasTorusfactor}}
299
\label{HasTorusfactor}
300
}\hfill{\scriptsize (property)}}\\
301
\textbf{\indent Returns:\ }
302
\texttt{true} or \texttt{false}
303
304
305
306
Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} has a torus factor. }
307
308
309
310
\subsection{\textcolor{Chapter }{HasNoTorusfactor}}
311
\logpage{[ 3, 2, 7 ]}\nobreak
312
\hyperdef{L}{X83AF576586EFA7A6}{}
313
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{HasNoTorusfactor({\mdseries\slshape vari})\index{HasNoTorusfactor@\texttt{HasNoTorusfactor}}
314
\label{HasNoTorusfactor}
315
}\hfill{\scriptsize (property)}}\\
316
\textbf{\indent Returns:\ }
317
\texttt{true} or \texttt{false}
318
319
320
321
Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} has no torus factor. }
322
323
324
325
\subsection{\textcolor{Chapter }{IsOrbifold}}
326
\logpage{[ 3, 2, 8 ]}\nobreak
327
\hyperdef{L}{X78CBF9007E82E5DF}{}
328
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsOrbifold({\mdseries\slshape vari})\index{IsOrbifold@\texttt{IsOrbifold}}
329
\label{IsOrbifold}
330
}\hfill{\scriptsize (property)}}\\
331
\textbf{\indent Returns:\ }
332
\texttt{true} or \texttt{false}
333
334
335
336
Checks if the toric variety \mbox{\texttt{\mdseries\slshape vari}} has an orbifold, which is, in the toric case, equivalent to the simpliciality
337
of the fan. }
338
339
}
340
341
342
\section{\textcolor{Chapter }{Toric varieties: Attributes}}\label{ToricVarieties:Attributes}
343
\logpage{[ 3, 3, 0 ]}
344
\hyperdef{L}{X7AA03F947802BFA6}{}
345
{
346
347
348
\subsection{\textcolor{Chapter }{AffineOpenCovering}}
349
\logpage{[ 3, 3, 1 ]}\nobreak
350
\hyperdef{L}{X82AB95E9870A50A6}{}
351
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AffineOpenCovering({\mdseries\slshape vari})\index{AffineOpenCovering@\texttt{AffineOpenCovering}}
352
\label{AffineOpenCovering}
353
}\hfill{\scriptsize (attribute)}}\\
354
\textbf{\indent Returns:\ }
355
a list
356
357
358
359
Returns a torus invariant affine open covering of the variety \mbox{\texttt{\mdseries\slshape vari}}. The affine open cover is computed out of the cones of the fan. }
360
361
362
363
\subsection{\textcolor{Chapter }{CoxRing}}
364
\logpage{[ 3, 3, 2 ]}\nobreak
365
\hyperdef{L}{X78F279E67EE26EBF}{}
366
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoxRing({\mdseries\slshape vari})\index{CoxRing@\texttt{CoxRing}}
367
\label{CoxRing}
368
}\hfill{\scriptsize (attribute)}}\\
369
\textbf{\indent Returns:\ }
370
a ring
371
372
373
374
Returns the Cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}}. The actual method requires a string with a name for the variables. A method
375
for computing the Cox ring without a variable given is not implemented. You
376
will get an error. }
377
378
379
380
\subsection{\textcolor{Chapter }{ListOfVariablesOfCoxRing}}
381
\logpage{[ 3, 3, 3 ]}\nobreak
382
\hyperdef{L}{X87C2F08C84052EB9}{}
383
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ListOfVariablesOfCoxRing({\mdseries\slshape vari})\index{ListOfVariablesOfCoxRing@\texttt{ListOfVariablesOfCoxRing}}
384
\label{ListOfVariablesOfCoxRing}
385
}\hfill{\scriptsize (attribute)}}\\
386
\textbf{\indent Returns:\ }
387
a list
388
389
390
391
Returns a list of the variables of the cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
392
393
394
395
\subsection{\textcolor{Chapter }{ClassGroup}}
396
\logpage{[ 3, 3, 4 ]}\nobreak
397
\hyperdef{L}{X872024617ADBE423}{}
398
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ClassGroup({\mdseries\slshape vari})\index{ClassGroup@\texttt{ClassGroup}}
399
\label{ClassGroup}
400
}\hfill{\scriptsize (attribute)}}\\
401
\textbf{\indent Returns:\ }
402
a module
403
404
405
406
Returns the class group of the variety \mbox{\texttt{\mdseries\slshape vari}} as factor of a free module. }
407
408
409
410
\subsection{\textcolor{Chapter }{PicardGroup}}
411
\logpage{[ 3, 3, 5 ]}\nobreak
412
\hyperdef{L}{X854A7BDA84D12EEC}{}
413
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PicardGroup({\mdseries\slshape vari})\index{PicardGroup@\texttt{PicardGroup}}
414
\label{PicardGroup}
415
}\hfill{\scriptsize (attribute)}}\\
416
\textbf{\indent Returns:\ }
417
a module
418
419
420
421
Returns the Picard group of the variety \mbox{\texttt{\mdseries\slshape vari}} as factor of a free module. }
422
423
424
425
\subsection{\textcolor{Chapter }{TorusInvariantDivisorGroup}}
426
\logpage{[ 3, 3, 6 ]}\nobreak
427
\hyperdef{L}{X8025428782FE96E1}{}
428
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{TorusInvariantDivisorGroup({\mdseries\slshape vari})\index{TorusInvariantDivisorGroup@\texttt{TorusInvariantDivisorGroup}}
429
\label{TorusInvariantDivisorGroup}
430
}\hfill{\scriptsize (attribute)}}\\
431
\textbf{\indent Returns:\ }
432
a module
433
434
435
436
Returns the subgroup of the Weil divisor group of the variety \mbox{\texttt{\mdseries\slshape vari}} generated by the torus invariant prime divisors. This is always a finitely
437
generated free module over the integers. }
438
439
440
441
\subsection{\textcolor{Chapter }{MapFromCharacterToPrincipalDivisor}}
442
\logpage{[ 3, 3, 7 ]}\nobreak
443
\hyperdef{L}{X86539CAC7DFFA60B}{}
444
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MapFromCharacterToPrincipalDivisor({\mdseries\slshape vari})\index{MapFromCharacterToPrincipalDivisor@\texttt{MapFromCharacterToPrincipalDivisor}}
445
\label{MapFromCharacterToPrincipalDivisor}
446
}\hfill{\scriptsize (attribute)}}\\
447
\textbf{\indent Returns:\ }
448
a morphism
449
450
451
452
Returns a map which maps an element of the character group into the torus
453
invariant Weil group of the variety \mbox{\texttt{\mdseries\slshape vari}}. This has to viewn as an help method to compute divisor classes. }
454
455
456
457
\subsection{\textcolor{Chapter }{Dimension}}
458
\logpage{[ 3, 3, 8 ]}\nobreak
459
\hyperdef{L}{X7E6926C6850E7C4E}{}
460
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Dimension({\mdseries\slshape vari})\index{Dimension@\texttt{Dimension}}
461
\label{Dimension}
462
}\hfill{\scriptsize (attribute)}}\\
463
\textbf{\indent Returns:\ }
464
an integer
465
466
467
468
Returns the dimension of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
469
470
471
472
\subsection{\textcolor{Chapter }{DimensionOfTorusfactor}}
473
\logpage{[ 3, 3, 9 ]}\nobreak
474
\hyperdef{L}{X7843850F8735A926}{}
475
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DimensionOfTorusfactor({\mdseries\slshape vari})\index{DimensionOfTorusfactor@\texttt{DimensionOfTorusfactor}}
476
\label{DimensionOfTorusfactor}
477
}\hfill{\scriptsize (attribute)}}\\
478
\textbf{\indent Returns:\ }
479
an integer
480
481
482
483
Returns the dimension of the torus factor of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
484
485
486
487
\subsection{\textcolor{Chapter }{CoordinateRingOfTorus}}
488
\logpage{[ 3, 3, 10 ]}\nobreak
489
\hyperdef{L}{X8514A91A7CEA7092}{}
490
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoordinateRingOfTorus({\mdseries\slshape vari})\index{CoordinateRingOfTorus@\texttt{CoordinateRingOfTorus}}
491
\label{CoordinateRingOfTorus}
492
}\hfill{\scriptsize (attribute)}}\\
493
\textbf{\indent Returns:\ }
494
a ring
495
496
497
498
Returns the coordinate ring of the torus of the variety \mbox{\texttt{\mdseries\slshape vari}}. This method is not implemented, you need to call it with a second argument,
499
which is a list of strings for the variables of the ring. }
500
501
502
503
\subsection{\textcolor{Chapter }{IsProductOf}}
504
\logpage{[ 3, 3, 11 ]}\nobreak
505
\hyperdef{L}{X876EF14B845E275E}{}
506
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsProductOf({\mdseries\slshape vari})\index{IsProductOf@\texttt{IsProductOf}}
507
\label{IsProductOf}
508
}\hfill{\scriptsize (attribute)}}\\
509
\textbf{\indent Returns:\ }
510
a list
511
512
513
514
If the variety \mbox{\texttt{\mdseries\slshape vari}} is a product of 2 or more varieties, the list contain those varieties. If it
515
is not a product or at least not generated as a product, the list only
516
contains the variety itself. }
517
518
519
520
\subsection{\textcolor{Chapter }{CharacterLattice}}
521
\logpage{[ 3, 3, 12 ]}\nobreak
522
\hyperdef{L}{X81E2EA227D69040A}{}
523
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CharacterLattice({\mdseries\slshape vari})\index{CharacterLattice@\texttt{CharacterLattice}}
524
\label{CharacterLattice}
525
}\hfill{\scriptsize (attribute)}}\\
526
\textbf{\indent Returns:\ }
527
a module
528
529
530
531
The method returns the character lattice of the variety \mbox{\texttt{\mdseries\slshape vari}}, computed as the containing grid of the underlying convex object, if it
532
exists. }
533
534
535
536
\subsection{\textcolor{Chapter }{TorusInvariantPrimeDivisors}}
537
\logpage{[ 3, 3, 13 ]}\nobreak
538
\hyperdef{L}{X84594CD787F6BA94}{}
539
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{TorusInvariantPrimeDivisors({\mdseries\slshape vari})\index{TorusInvariantPrimeDivisors@\texttt{TorusInvariantPrimeDivisors}}
540
\label{TorusInvariantPrimeDivisors}
541
}\hfill{\scriptsize (attribute)}}\\
542
\textbf{\indent Returns:\ }
543
a list
544
545
546
547
The method returns a list of the torus invariant prime divisors of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
548
549
550
551
\subsection{\textcolor{Chapter }{IrrelevantIdeal}}
552
\logpage{[ 3, 3, 14 ]}\nobreak
553
\hyperdef{L}{X78BB13787BA1C31C}{}
554
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IrrelevantIdeal({\mdseries\slshape vari})\index{IrrelevantIdeal@\texttt{IrrelevantIdeal}}
555
\label{IrrelevantIdeal}
556
}\hfill{\scriptsize (attribute)}}\\
557
\textbf{\indent Returns:\ }
558
an ideal
559
560
561
562
Returns the irrelevant ideal of the cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
563
564
565
566
\subsection{\textcolor{Chapter }{MorphismFromCoxVariety}}
567
\logpage{[ 3, 3, 15 ]}\nobreak
568
\hyperdef{L}{X78CFA34884706A16}{}
569
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MorphismFromCoxVariety({\mdseries\slshape vari})\index{MorphismFromCoxVariety@\texttt{MorphismFromCoxVariety}}
570
\label{MorphismFromCoxVariety}
571
}\hfill{\scriptsize (attribute)}}\\
572
\textbf{\indent Returns:\ }
573
a morphism
574
575
576
577
The method returns the quotient morphism from the variety of the Cox ring to
578
the variety \mbox{\texttt{\mdseries\slshape vari}}. }
579
580
581
582
\subsection{\textcolor{Chapter }{CoxVariety}}
583
\logpage{[ 3, 3, 16 ]}\nobreak
584
\hyperdef{L}{X8761518B7F4F6C58}{}
585
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoxVariety({\mdseries\slshape vari})\index{CoxVariety@\texttt{CoxVariety}}
586
\label{CoxVariety}
587
}\hfill{\scriptsize (attribute)}}\\
588
\textbf{\indent Returns:\ }
589
a variety
590
591
592
593
The method returns the Cox variety of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
594
595
596
597
\subsection{\textcolor{Chapter }{FanOfVariety}}
598
\logpage{[ 3, 3, 17 ]}\nobreak
599
\hyperdef{L}{X7F89CB52790F3E87}{}
600
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FanOfVariety({\mdseries\slshape vari})\index{FanOfVariety@\texttt{FanOfVariety}}
601
\label{FanOfVariety}
602
}\hfill{\scriptsize (attribute)}}\\
603
\textbf{\indent Returns:\ }
604
a fan
605
606
607
608
Returns the fan of the variety \mbox{\texttt{\mdseries\slshape vari}}. This is set by default. }
609
610
611
612
\subsection{\textcolor{Chapter }{CartierTorusInvariantDivisorGroup}}
613
\logpage{[ 3, 3, 18 ]}\nobreak
614
\hyperdef{L}{X7BEC4BCD7B3B3522}{}
615
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CartierTorusInvariantDivisorGroup({\mdseries\slshape vari})\index{CartierTorusInvariantDivisorGroup@\texttt{CartierTorusInvariantDivisorGroup}}
616
\label{CartierTorusInvariantDivisorGroup}
617
}\hfill{\scriptsize (attribute)}}\\
618
\textbf{\indent Returns:\ }
619
a module
620
621
622
623
Returns the the group of Cartier divisors of the variety \mbox{\texttt{\mdseries\slshape vari}} as a subgroup of the divisor group. }
624
625
626
627
\subsection{\textcolor{Chapter }{NameOfVariety}}
628
\logpage{[ 3, 3, 19 ]}\nobreak
629
\hyperdef{L}{X853D172E78C7D0B2}{}
630
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{NameOfVariety({\mdseries\slshape vari})\index{NameOfVariety@\texttt{NameOfVariety}}
631
\label{NameOfVariety}
632
}\hfill{\scriptsize (attribute)}}\\
633
\textbf{\indent Returns:\ }
634
a string
635
636
637
638
Returns the name of the variety \mbox{\texttt{\mdseries\slshape vari}} if it has one and it is known or can be computed. }
639
640
641
642
\subsection{\textcolor{Chapter }{twitter}}
643
\logpage{[ 3, 3, 20 ]}\nobreak
644
\hyperdef{L}{X820E750381030706}{}
645
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{twitter({\mdseries\slshape vari})\index{twitter@\texttt{twitter}}
646
\label{twitter}
647
}\hfill{\scriptsize (attribute)}}\\
648
\textbf{\indent Returns:\ }
649
a ring
650
651
652
653
This is a dummy to get immediate methods triggered at some times. It never has
654
a value. }
655
656
}
657
658
659
\section{\textcolor{Chapter }{Toric varieties: Methods}}\label{ToricVarieties:Methods}
660
\logpage{[ 3, 4, 0 ]}
661
\hyperdef{L}{X866EE174808EA7F9}{}
662
{
663
664
665
\subsection{\textcolor{Chapter }{UnderlyingSheaf}}
666
\logpage{[ 3, 4, 1 ]}\nobreak
667
\hyperdef{L}{X7DB5B6CB86F766A5}{}
668
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingSheaf({\mdseries\slshape vari})\index{UnderlyingSheaf@\texttt{UnderlyingSheaf}}
669
\label{UnderlyingSheaf}
670
}\hfill{\scriptsize (operation)}}\\
671
\textbf{\indent Returns:\ }
672
a sheaf
673
674
675
676
The method returns the underlying sheaf of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
677
678
679
680
\subsection{\textcolor{Chapter }{CoordinateRingOfTorus (for a variety and a list of variables)}}
681
\logpage{[ 3, 4, 2 ]}\nobreak
682
\hyperdef{L}{X7D01CCCE78FA1FDE}{}
683
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoordinateRingOfTorus({\mdseries\slshape vari, vars})\index{CoordinateRingOfTorus@\texttt{CoordinateRingOfTorus}!for a variety and a list of variables}
684
\label{CoordinateRingOfTorus:for a variety and a list of variables}
685
}\hfill{\scriptsize (operation)}}\\
686
\textbf{\indent Returns:\ }
687
a ring
688
689
690
691
Computes the coordinate ring of the torus of the variety \mbox{\texttt{\mdseries\slshape vari}} with the variables \mbox{\texttt{\mdseries\slshape vars}}. The argument \mbox{\texttt{\mdseries\slshape vars}} need to be a list of strings with length dimension or two times dimension. }
692
693
694
695
\subsection{\textcolor{Chapter }{\texttt{\symbol{92}}*}}
696
\logpage{[ 3, 4, 3 ]}\nobreak
697
\hyperdef{L}{X7857704878577048}{}
698
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{\texttt{\symbol{92}}*({\mdseries\slshape vari1, vari2})\index{*@\texttt{\texttt{\symbol{92}}*}}
699
\label{*}
700
}\hfill{\scriptsize (operation)}}\\
701
\textbf{\indent Returns:\ }
702
a variety
703
704
705
706
Computes the categorial product of the varieties \mbox{\texttt{\mdseries\slshape vari1}} and \mbox{\texttt{\mdseries\slshape vari2}}. }
707
708
709
710
\subsection{\textcolor{Chapter }{CharacterToRationalFunction}}
711
\logpage{[ 3, 4, 4 ]}\nobreak
712
\hyperdef{L}{X80DBA6A18199A4A4}{}
713
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CharacterToRationalFunction({\mdseries\slshape elem, vari})\index{CharacterToRationalFunction@\texttt{CharacterToRationalFunction}}
714
\label{CharacterToRationalFunction}
715
}\hfill{\scriptsize (operation)}}\\
716
\textbf{\indent Returns:\ }
717
a homalg element
718
719
720
721
Computes the rational function corresponding to the character grid element \mbox{\texttt{\mdseries\slshape elem}} or to the list of integers \mbox{\texttt{\mdseries\slshape elem}}. To compute rational functions you first need to compute to coordinate ring
722
of the torus of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
723
724
725
726
\subsection{\textcolor{Chapter }{CoxRing (for a variety and a string of variables)}}
727
\logpage{[ 3, 4, 5 ]}\nobreak
728
\hyperdef{L}{X80917C0C82171774}{}
729
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoxRing({\mdseries\slshape vari, vars})\index{CoxRing@\texttt{CoxRing}!for a variety and a string of variables}
730
\label{CoxRing:for a variety and a string of variables}
731
}\hfill{\scriptsize (operation)}}\\
732
\textbf{\indent Returns:\ }
733
a ring
734
735
736
737
Computes the Cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}}. \mbox{\texttt{\mdseries\slshape vars}} needs to be a string containing one variable, which will be numbered by the
738
method. }
739
740
741
742
\subsection{\textcolor{Chapter }{WeilDivisorsOfVariety}}
743
\logpage{[ 3, 4, 6 ]}\nobreak
744
\hyperdef{L}{X79474EA085374986}{}
745
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{WeilDivisorsOfVariety({\mdseries\slshape vari})\index{WeilDivisorsOfVariety@\texttt{WeilDivisorsOfVariety}}
746
\label{WeilDivisorsOfVariety}
747
}\hfill{\scriptsize (operation)}}\\
748
\textbf{\indent Returns:\ }
749
a list
750
751
752
753
Returns a list of the currently defined Divisors of the toric variety. }
754
755
756
757
\subsection{\textcolor{Chapter }{Fan}}
758
\logpage{[ 3, 4, 7 ]}\nobreak
759
\hyperdef{L}{X80D0196B80DC94F3}{}
760
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Fan({\mdseries\slshape vari})\index{Fan@\texttt{Fan}}
761
\label{Fan}
762
}\hfill{\scriptsize (operation)}}\\
763
\textbf{\indent Returns:\ }
764
a fan
765
766
767
768
Returns the fan of the variety \mbox{\texttt{\mdseries\slshape vari}}. This is a rename for FanOfVariety. }
769
770
}
771
772
773
\section{\textcolor{Chapter }{Toric varieties: Constructors}}\label{ToricVarieties:Constructors}
774
\logpage{[ 3, 5, 0 ]}
775
\hyperdef{L}{X7C1E65F7809F51A7}{}
776
{
777
778
779
\subsection{\textcolor{Chapter }{ToricVariety}}
780
\logpage{[ 3, 5, 1 ]}\nobreak
781
\hyperdef{L}{X84CA1FBC8057E3E0}{}
782
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricVariety({\mdseries\slshape conv})\index{ToricVariety@\texttt{ToricVariety}}
783
\label{ToricVariety}
784
}\hfill{\scriptsize (operation)}}\\
785
\textbf{\indent Returns:\ }
786
a ring
787
788
789
790
Creates a toric variety out of the convex object \mbox{\texttt{\mdseries\slshape conv}}. }
791
792
}
793
794
795
\section{\textcolor{Chapter }{Toric varieties: Examples}}\label{ToricVarieties:Examples}
796
\logpage{[ 3, 6, 0 ]}
797
\hyperdef{L}{X802337377FDC8121}{}
798
{
799
800
\subsection{\textcolor{Chapter }{The Hirzebruch surface of index 5}}\label{Hirzebruch5Example}
801
\logpage{[ 3, 6, 1 ]}
802
\hyperdef{L}{X7F674AD387A33155}{}
803
{
804
805
\begin{Verbatim}[commandchars=!@E,fontsize=\small,frame=single,label=Example]
806
!gapprompt@gap>E !gapinput@H5 := Fan( [[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]] );E
807
<A fan in |R^2>
808
!gapprompt@gap>E !gapinput@H5 := ToricVariety( H5 );E
809
<A toric variety of dimension 2>
810
!gapprompt@gap>E !gapinput@IsComplete( H5 );E
811
true
812
!gapprompt@gap>E !gapinput@IsAffine( H5 );E
813
false
814
!gapprompt@gap>E !gapinput@IsOrbifold( H5 );E
815
true
816
!gapprompt@gap>E !gapinput@IsProjective( H5 );E
817
true
818
!gapprompt@gap>E !gapinput@TorusInvariantPrimeDivisors(H5);E
819
[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,
820
<A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>,
821
<A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,
822
<A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]
823
!gapprompt@gap>E !gapinput@P := TorusInvariantPrimeDivisors(H5);E
824
[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,
825
<A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>,
826
<A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,
827
<A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]
828
!gapprompt@gap>E !gapinput@A := P[ 1 ] - P[ 2 ] + 4*P[ 3 ];E
829
<A divisor of a toric variety with coordinates [ 1, -1, 4, 0 ]>
830
!gapprompt@gap>E !gapinput@A;E
831
<A divisor of a toric variety with coordinates [ 1, -1, 4, 0 ]>
832
!gapprompt@gap>E !gapinput@IsAmple(A);E
833
false
834
!gapprompt@gap>E !gapinput@CoordinateRingOfTorus(H5,"x");;E
835
Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )
836
!gapprompt@gap>E !gapinput@D:=CreateDivisor([0,0,0,0],H5);E
837
<A divisor of a toric variety with coordinates 0>
838
!gapprompt@gap>E !gapinput@BasisOfGlobalSections(D);E
839
[ |[ 1 ]| ]
840
!gapprompt@gap>E !gapinput@D:=Sum(P);E
841
<A divisor of a toric variety with coordinates [ 1, 1, 1, 1 ]>
842
!gapprompt@gap>E !gapinput@BasisOfGlobalSections(D);E
843
[ |[ x1_ ]|, |[ x1_*x2 ]|, |[ 1 ]|, |[ x2 ]|,
844
|[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|,
845
|[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|,
846
|[ x1^6*x2 ]| ]
847
!gapprompt@gap>E !gapinput@DivisorOfCharacter([1,2],H5);E
848
<A principal divisor of a toric variety with coordinates [ 9, 2, 1, -2 ]>
849
!gapprompt@gap>E !gapinput@BasisOfGlobalSections(last);E
850
[ |[ x1_*x2_^2 ]| ]
851
\end{Verbatim}
852
}
853
854
}
855
856
}
857
858
859
\chapter{\textcolor{Chapter }{Toric subvarieties}}\label{Subvarieties}
860
\logpage{[ 4, 0, 0 ]}
861
\hyperdef{L}{X84370283823C138C}{}
862
{
863
864
\section{\textcolor{Chapter }{Toric subvarieties: Category and Representations}}\label{Subvarieties:Category}
865
\logpage{[ 4, 1, 0 ]}
866
\hyperdef{L}{X7A22F3137FA25458}{}
867
{
868
869
870
\subsection{\textcolor{Chapter }{IsToricSubvariety}}
871
\logpage{[ 4, 1, 1 ]}\nobreak
872
\hyperdef{L}{X85CA472F7A14BF8C}{}
873
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsToricSubvariety({\mdseries\slshape M})\index{IsToricSubvariety@\texttt{IsToricSubvariety}}
874
\label{IsToricSubvariety}
875
}\hfill{\scriptsize (Category)}}\\
876
\textbf{\indent Returns:\ }
877
\texttt{true} or \texttt{false}
878
879
880
881
The \textsf{GAP} category of a toric subvariety. Every toric subvariety is a toric variety, so
882
every method applicable to toric varieties is also applicable to toric
883
subvarieties. }
884
885
}
886
887
888
\section{\textcolor{Chapter }{Toric subvarieties: Properties}}\label{Subvarieties:Properties}
889
\logpage{[ 4, 2, 0 ]}
890
\hyperdef{L}{X826EDD1B846E74B0}{}
891
{
892
893
894
\subsection{\textcolor{Chapter }{IsClosed}}
895
\logpage{[ 4, 2, 1 ]}\nobreak
896
\hyperdef{L}{X81D5A4A97AA9D4B0}{}
897
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsClosed({\mdseries\slshape vari})\index{IsClosed@\texttt{IsClosed}}
898
\label{IsClosed}
899
}\hfill{\scriptsize (property)}}\\
900
\textbf{\indent Returns:\ }
901
\texttt{true} or \texttt{false}
902
903
904
905
Checks if the subvariety \mbox{\texttt{\mdseries\slshape vari}} is a closed subset of its ambient variety. }
906
907
908
909
\subsection{\textcolor{Chapter }{IsOpen}}
910
\logpage{[ 4, 2, 2 ]}\nobreak
911
\hyperdef{L}{X8247435184B2DE47}{}
912
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsOpen({\mdseries\slshape vari})\index{IsOpen@\texttt{IsOpen}}
913
\label{IsOpen}
914
}\hfill{\scriptsize (property)}}\\
915
\textbf{\indent Returns:\ }
916
\texttt{true} or \texttt{false}
917
918
919
920
Checks if a subvariety is a closed subset. }
921
922
923
924
\subsection{\textcolor{Chapter }{IsWholeVariety}}
925
\logpage{[ 4, 2, 3 ]}\nobreak
926
\hyperdef{L}{X7A9968777C5E19A4}{}
927
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsWholeVariety({\mdseries\slshape vari})\index{IsWholeVariety@\texttt{IsWholeVariety}}
928
\label{IsWholeVariety}
929
}\hfill{\scriptsize (property)}}\\
930
\textbf{\indent Returns:\ }
931
\texttt{true} or \texttt{false}
932
933
934
935
Returns true if the subvariety \mbox{\texttt{\mdseries\slshape vari}} is the whole variety. }
936
937
}
938
939
940
\section{\textcolor{Chapter }{Toric subvarieties: Attributes}}\label{Subvarieties:Attributes}
941
\logpage{[ 4, 3, 0 ]}
942
\hyperdef{L}{X790B57E084CC7198}{}
943
{
944
945
946
\subsection{\textcolor{Chapter }{UnderlyingToricVariety}}
947
\logpage{[ 4, 3, 1 ]}\nobreak
948
\hyperdef{L}{X7D9CEB4A878CC07C}{}
949
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingToricVariety({\mdseries\slshape vari})\index{UnderlyingToricVariety@\texttt{UnderlyingToricVariety}}
950
\label{UnderlyingToricVariety}
951
}\hfill{\scriptsize (attribute)}}\\
952
\textbf{\indent Returns:\ }
953
a variety
954
955
956
957
Returns the toric variety which is represented by \mbox{\texttt{\mdseries\slshape vari}}. This method implements the forgetful functor subvarieties -{\textgreater}
958
varieties. }
959
960
961
962
\subsection{\textcolor{Chapter }{InclusionMorphism}}
963
\logpage{[ 4, 3, 2 ]}\nobreak
964
\hyperdef{L}{X84AE669679A57F17}{}
965
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{InclusionMorphism({\mdseries\slshape vari})\index{InclusionMorphism@\texttt{InclusionMorphism}}
966
\label{InclusionMorphism}
967
}\hfill{\scriptsize (attribute)}}\\
968
\textbf{\indent Returns:\ }
969
a morphism
970
971
972
973
If the variety \mbox{\texttt{\mdseries\slshape vari}} is an open subvariety, this method returns the inclusion morphism in its
974
ambient variety. If not, it will fail. }
975
976
977
978
\subsection{\textcolor{Chapter }{AmbientToricVariety}}
979
\logpage{[ 4, 3, 3 ]}\nobreak
980
\hyperdef{L}{X87ADD8677D3DC498}{}
981
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AmbientToricVariety({\mdseries\slshape vari})\index{AmbientToricVariety@\texttt{AmbientToricVariety}}
982
\label{AmbientToricVariety}
983
}\hfill{\scriptsize (attribute)}}\\
984
\textbf{\indent Returns:\ }
985
a variety
986
987
988
989
Returns the ambient toric variety of the subvariety \mbox{\texttt{\mdseries\slshape vari}} }
990
991
}
992
993
994
\section{\textcolor{Chapter }{Toric subvarieties: Methods}}\label{Subvarieties:Methods}
995
\logpage{[ 4, 4, 0 ]}
996
\hyperdef{L}{X7B50D40D858C8B3C}{}
997
{
998
999
1000
\subsection{\textcolor{Chapter }{ClosureOfTorusOrbitOfCone}}
1001
\logpage{[ 4, 4, 1 ]}\nobreak
1002
\hyperdef{L}{X7E9E173183C04931}{}
1003
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ClosureOfTorusOrbitOfCone({\mdseries\slshape vari, cone})\index{ClosureOfTorusOrbitOfCone@\texttt{ClosureOfTorusOrbitOfCone}}
1004
\label{ClosureOfTorusOrbitOfCone}
1005
}\hfill{\scriptsize (operation)}}\\
1006
\textbf{\indent Returns:\ }
1007
a subvariety
1008
1009
1010
1011
The method returns the closure of the orbit of the torus contained in \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the cone \mbox{\texttt{\mdseries\slshape cone}} as a closed subvariety of \mbox{\texttt{\mdseries\slshape vari}}. }
1012
1013
}
1014
1015
1016
\section{\textcolor{Chapter }{Toric subvarieties: Constructors}}\label{Subvarieties:Constructors}
1017
\logpage{[ 4, 5, 0 ]}
1018
\hyperdef{L}{X7C5DB208861E7E7F}{}
1019
{
1020
1021
1022
\subsection{\textcolor{Chapter }{ToricSubvariety}}
1023
\logpage{[ 4, 5, 1 ]}\nobreak
1024
\hyperdef{L}{X851CDD807D40B7EF}{}
1025
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricSubvariety({\mdseries\slshape vari, ambvari})\index{ToricSubvariety@\texttt{ToricSubvariety}}
1026
\label{ToricSubvariety}
1027
}\hfill{\scriptsize (operation)}}\\
1028
\textbf{\indent Returns:\ }
1029
a subvariety
1030
1031
1032
1033
The method returns the closure of the orbit of the torus contained in \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the cone \mbox{\texttt{\mdseries\slshape cone}} as a closed subvariety of \mbox{\texttt{\mdseries\slshape vari}}. }
1034
1035
}
1036
1037
}
1038
1039
1040
\chapter{\textcolor{Chapter }{Affine toric varieties}}\label{AffineVariety}
1041
\logpage{[ 5, 0, 0 ]}
1042
\hyperdef{L}{X82F418F483E4D0D6}{}
1043
{
1044
1045
\section{\textcolor{Chapter }{Affine toric varieties: Category and Representations}}\label{AffineVariety:Category}
1046
\logpage{[ 5, 1, 0 ]}
1047
\hyperdef{L}{X83355FC284165BD4}{}
1048
{
1049
1050
1051
\subsection{\textcolor{Chapter }{IsAffineToricVariety}}
1052
\logpage{[ 5, 1, 1 ]}\nobreak
1053
\hyperdef{L}{X7ED0399F81CBB82D}{}
1054
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsAffineToricVariety({\mdseries\slshape M})\index{IsAffineToricVariety@\texttt{IsAffineToricVariety}}
1055
\label{IsAffineToricVariety}
1056
}\hfill{\scriptsize (Category)}}\\
1057
\textbf{\indent Returns:\ }
1058
\texttt{true} or \texttt{false}
1059
1060
1061
1062
The \textsf{GAP} category of an affine toric variety. All affine toric varieties are toric
1063
varieties, so everything applicable to toric varieties is applicable to affine
1064
toric varieties. }
1065
1066
}
1067
1068
1069
\section{\textcolor{Chapter }{Affine toric varieties: Properties}}\label{AffineVariety:Properties}
1070
\logpage{[ 5, 2, 0 ]}
1071
\hyperdef{L}{X80DB08C5837B0A49}{}
1072
{
1073
Affine toric varieties have no additional properties. Remember that affine
1074
toric varieties are toric varieties, so every property of a toric variety is a
1075
property of an affine toric variety. }
1076
1077
1078
\section{\textcolor{Chapter }{Affine toric varieties: Attributes}}\label{AffineVariety:Attributes}
1079
\logpage{[ 5, 3, 0 ]}
1080
\hyperdef{L}{X7BBE823E8205F52F}{}
1081
{
1082
1083
1084
\subsection{\textcolor{Chapter }{CoordinateRing}}
1085
\logpage{[ 5, 3, 1 ]}\nobreak
1086
\hyperdef{L}{X81BCE73D8353F9DE}{}
1087
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoordinateRing({\mdseries\slshape vari})\index{CoordinateRing@\texttt{CoordinateRing}}
1088
\label{CoordinateRing}
1089
}\hfill{\scriptsize (attribute)}}\\
1090
\textbf{\indent Returns:\ }
1091
a ring
1092
1093
1094
1095
Returns the coordinate ring of the affine toric variety \mbox{\texttt{\mdseries\slshape vari}}. The computation is mainly done in ToricIdeals package. }
1096
1097
1098
1099
\subsection{\textcolor{Chapter }{ListOfVariablesOfCoordinateRing}}
1100
\logpage{[ 5, 3, 2 ]}\nobreak
1101
\hyperdef{L}{X7F459CD178502F4E}{}
1102
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ListOfVariablesOfCoordinateRing({\mdseries\slshape vari})\index{ListOfVariablesOfCoordinateRing@\texttt{ListOfVariablesOfCoordinateRing}}
1103
\label{ListOfVariablesOfCoordinateRing}
1104
}\hfill{\scriptsize (attribute)}}\\
1105
\textbf{\indent Returns:\ }
1106
a list
1107
1108
1109
1110
Returns a list containing the variables of the CoordinateRing of the variety \mbox{\texttt{\mdseries\slshape vari}}. }
1111
1112
1113
1114
\subsection{\textcolor{Chapter }{MorphismFromCoordinateRingToCoordinateRingOfTorus}}
1115
\logpage{[ 5, 3, 3 ]}\nobreak
1116
\hyperdef{L}{X82A61ED17E17D0C2}{}
1117
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MorphismFromCoordinateRingToCoordinateRingOfTorus({\mdseries\slshape vari})\index{MorphismFromCoordinateRingToCoordinateRingOfTorus@\texttt{Morphism}\-\texttt{From}\-\texttt{Coordinate}\-\texttt{Ring}\-\texttt{To}\-\texttt{Coordinate}\-\texttt{Ring}\-\texttt{Of}\-\texttt{Torus}}
1118
\label{MorphismFromCoordinateRingToCoordinateRingOfTorus}
1119
}\hfill{\scriptsize (attribute)}}\\
1120
\textbf{\indent Returns:\ }
1121
a morphism
1122
1123
1124
1125
Returns the morphism between the coordinate ring of the variety \mbox{\texttt{\mdseries\slshape vari}} and the coordinate ring of its torus. This defines the embedding of the torus
1126
in the variety. }
1127
1128
1129
1130
\subsection{\textcolor{Chapter }{ConeOfVariety}}
1131
\logpage{[ 5, 3, 4 ]}\nobreak
1132
\hyperdef{L}{X8642EA7886E09E44}{}
1133
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ConeOfVariety({\mdseries\slshape vari})\index{ConeOfVariety@\texttt{ConeOfVariety}}
1134
\label{ConeOfVariety}
1135
}\hfill{\scriptsize (attribute)}}\\
1136
\textbf{\indent Returns:\ }
1137
a cone
1138
1139
1140
1141
Returns the cone ring of the affine toric variety \mbox{\texttt{\mdseries\slshape vari}}. }
1142
1143
}
1144
1145
1146
\section{\textcolor{Chapter }{Affine toric varieties: Methods}}\label{AffineVariety:Methods}
1147
\logpage{[ 5, 4, 0 ]}
1148
\hyperdef{L}{X8012A86C8008CC21}{}
1149
{
1150
1151
1152
\subsection{\textcolor{Chapter }{CoordinateRing (for affine Varieties)}}
1153
\logpage{[ 5, 4, 1 ]}\nobreak
1154
\hyperdef{L}{X85926C9D8411CCC1}{}
1155
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoordinateRing({\mdseries\slshape vari, indet})\index{CoordinateRing@\texttt{CoordinateRing}!for affine Varieties}
1156
\label{CoordinateRing:for affine Varieties}
1157
}\hfill{\scriptsize (operation)}}\\
1158
\textbf{\indent Returns:\ }
1159
a variety
1160
1161
1162
1163
Computes the coordinate ring of the affine toric variety \mbox{\texttt{\mdseries\slshape vari}} with indeterminates \mbox{\texttt{\mdseries\slshape indet}}. }
1164
1165
1166
1167
\subsection{\textcolor{Chapter }{Cone}}
1168
\logpage{[ 5, 4, 2 ]}\nobreak
1169
\hyperdef{L}{X822975FC7F646FE5}{}
1170
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Cone({\mdseries\slshape vari})\index{Cone@\texttt{Cone}}
1171
\label{Cone}
1172
}\hfill{\scriptsize (operation)}}\\
1173
\textbf{\indent Returns:\ }
1174
a cone
1175
1176
1177
1178
Returns the cone of the variety \mbox{\texttt{\mdseries\slshape vari}}. Another name for ConeOfVariety for compatibility and shortness. }
1179
1180
}
1181
1182
1183
\section{\textcolor{Chapter }{Affine toric varieties: Constructors}}\label{AffineVariety:Constructors}
1184
\logpage{[ 5, 5, 0 ]}
1185
\hyperdef{L}{X846A65F77C4BEA35}{}
1186
{
1187
The constructors are the same as for toric varieties. Calling them with a cone
1188
will result in an affine variety. }
1189
1190
1191
\section{\textcolor{Chapter }{Affine toric Varieties: Examples}}\label{AffineVariety:Examples}
1192
\logpage{[ 5, 6, 0 ]}
1193
\hyperdef{L}{X8068F91F7C001DE7}{}
1194
{
1195
1196
\subsection{\textcolor{Chapter }{Affine space}}\label{AffineSpaceExampleSubsection}
1197
\logpage{[ 5, 6, 1 ]}
1198
\hyperdef{L}{X782DF75D8761D85B}{}
1199
{
1200
1201
\begin{Verbatim}[commandchars=!@B,fontsize=\small,frame=single,label=Example]
1202
!gapprompt@gap>B !gapinput@C:=Cone( [[1,0,0],[0,1,0],[0,0,1]] );B
1203
<A cone in |R^3>
1204
!gapprompt@gap>B !gapinput@C3:=ToricVariety(C);B
1205
<An affine normal toric variety of dimension 3>
1206
!gapprompt@gap>B !gapinput@Dimension(C3);B
1207
3
1208
!gapprompt@gap>B !gapinput@IsOrbifold(C3);B
1209
true
1210
!gapprompt@gap>B !gapinput@IsSmooth(C3);B
1211
true
1212
!gapprompt@gap>B !gapinput@CoordinateRingOfTorus(C3,"x");B
1213
Q[x1,x1_,x2,x2_,x3,x3_]/( x3*x3_-1, x2*x2_-1, x1*x1_-1 )
1214
!gapprompt@gap>B !gapinput@CoordinateRing(C3,"x");B
1215
Q[x_1,x_2,x_3]
1216
!gapprompt@gap>B !gapinput@MorphismFromCoordinateRingToCoordinateRingOfTorus(C3);B
1217
<A monomorphism of rings>
1218
!gapprompt@gap>B !gapinput@C3;B
1219
<An affine normal smooth toric variety of dimension 3>
1220
!gapprompt@gap>B !gapinput@StructureDescription(C3);B
1221
"|A^3"
1222
\end{Verbatim}
1223
}
1224
1225
}
1226
1227
}
1228
1229
1230
\chapter{\textcolor{Chapter }{Projective toric varieties}}\label{ProjectiveVariety}
1231
\logpage{[ 6, 0, 0 ]}
1232
\hyperdef{L}{X7EEBFF7883297DBC}{}
1233
{
1234
1235
\section{\textcolor{Chapter }{Projective toric varieties: Category and Representations}}\label{ProjectiveVariety:Category}
1236
\logpage{[ 6, 1, 0 ]}
1237
\hyperdef{L}{X7A7AC40C780CAF75}{}
1238
{
1239
1240
1241
\subsection{\textcolor{Chapter }{IsProjectiveToricVariety}}
1242
\logpage{[ 6, 1, 1 ]}\nobreak
1243
\hyperdef{L}{X7D7A64ED86E8C558}{}
1244
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsProjectiveToricVariety({\mdseries\slshape M})\index{IsProjectiveToricVariety@\texttt{IsProjectiveToricVariety}}
1245
\label{IsProjectiveToricVariety}
1246
}\hfill{\scriptsize (Category)}}\\
1247
\textbf{\indent Returns:\ }
1248
\texttt{true} or \texttt{false}
1249
1250
1251
1252
The \textsf{GAP} category of a projective toric variety. }
1253
1254
}
1255
1256
1257
\section{\textcolor{Chapter }{Projective toric varieties: Properties}}\label{ProjectiveVariety:Properties}
1258
\logpage{[ 6, 2, 0 ]}
1259
\hyperdef{L}{X826634D3848FC540}{}
1260
{
1261
Projective toric varieties have no additional properties. Remember that
1262
projective toric varieties are toric varieties, so every property of a toric
1263
variety is a property of an projective toric variety. }
1264
1265
1266
\section{\textcolor{Chapter }{Projective toric varieties: Attributes}}\label{ProjectiveVariety:Attributes}
1267
\logpage{[ 6, 3, 0 ]}
1268
\hyperdef{L}{X7903BE287F71B26E}{}
1269
{
1270
1271
1272
\subsection{\textcolor{Chapter }{AffineCone}}
1273
\logpage{[ 6, 3, 1 ]}\nobreak
1274
\hyperdef{L}{X7C3748B8878B799A}{}
1275
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AffineCone({\mdseries\slshape vari})\index{AffineCone@\texttt{AffineCone}}
1276
\label{AffineCone}
1277
}\hfill{\scriptsize (attribute)}}\\
1278
\textbf{\indent Returns:\ }
1279
a variety
1280
1281
1282
1283
Returns the affine cone of the projective toric variety \mbox{\texttt{\mdseries\slshape vari}}. }
1284
1285
1286
1287
\subsection{\textcolor{Chapter }{PolytopeOfVariety}}
1288
\logpage{[ 6, 3, 2 ]}\nobreak
1289
\hyperdef{L}{X791054957C1EE370}{}
1290
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PolytopeOfVariety({\mdseries\slshape vari})\index{PolytopeOfVariety@\texttt{PolytopeOfVariety}}
1291
\label{PolytopeOfVariety}
1292
}\hfill{\scriptsize (attribute)}}\\
1293
\textbf{\indent Returns:\ }
1294
a polytope
1295
1296
1297
1298
Returns the polytope corresponding to the projective toric variety \mbox{\texttt{\mdseries\slshape vari}}, if it exists. }
1299
1300
1301
1302
\subsection{\textcolor{Chapter }{ProjectiveEmbedding}}
1303
\logpage{[ 6, 3, 3 ]}\nobreak
1304
\hyperdef{L}{X7CD1FB1E83F80D5F}{}
1305
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ProjectiveEmbedding({\mdseries\slshape vari})\index{ProjectiveEmbedding@\texttt{ProjectiveEmbedding}}
1306
\label{ProjectiveEmbedding}
1307
}\hfill{\scriptsize (attribute)}}\\
1308
\textbf{\indent Returns:\ }
1309
a list
1310
1311
1312
1313
Returns characters for a closed embedding in an projective space for the
1314
projective toric variety \mbox{\texttt{\mdseries\slshape vari}}. }
1315
1316
}
1317
1318
1319
\section{\textcolor{Chapter }{Projective toric varieties: Methods}}\label{ProjectiveVariety:Methods}
1320
\logpage{[ 6, 4, 0 ]}
1321
\hyperdef{L}{X7D9E26467C26EFE6}{}
1322
{
1323
1324
1325
\subsection{\textcolor{Chapter }{Polytope}}
1326
\logpage{[ 6, 4, 1 ]}\nobreak
1327
\hyperdef{L}{X855106007DE72898}{}
1328
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Polytope({\mdseries\slshape vari})\index{Polytope@\texttt{Polytope}}
1329
\label{Polytope}
1330
}\hfill{\scriptsize (operation)}}\\
1331
\textbf{\indent Returns:\ }
1332
a polytope
1333
1334
1335
1336
Returns the polytope of the variety \mbox{\texttt{\mdseries\slshape vari}}. Another name for PolytopeOfVariety for compatibility and shortness. }
1337
1338
}
1339
1340
1341
\section{\textcolor{Chapter }{Projective toric varieties: Constructors}}\label{ProjectiveVariety:Constructors}
1342
\logpage{[ 6, 5, 0 ]}
1343
\hyperdef{L}{X81EFA5668447D0A4}{}
1344
{
1345
The constructors are the same as for toric varieties. Calling them with a
1346
polytope will result in an projective variety. }
1347
1348
1349
\section{\textcolor{Chapter }{Projective toric varieties: Examples}}\label{ProjectiveVariety:Examples}
1350
\logpage{[ 6, 6, 0 ]}
1351
\hyperdef{L}{X8403EE76819E200F}{}
1352
{
1353
1354
\subsection{\textcolor{Chapter }{PxP1 created by a polytope}}\label{P1P1PolytopeExampleSubsection}
1355
\logpage{[ 6, 6, 1 ]}
1356
\hyperdef{L}{X802DB11784310E99}{}
1357
{
1358
1359
\begin{Verbatim}[commandchars=!@B,fontsize=\small,frame=single,label=Example]
1360
!gapprompt@gap>B !gapinput@P1P1 := Polytope( [[1,1],[1,-1],[-1,-1],[-1,1]] );B
1361
<A polytope in |R^2>
1362
!gapprompt@gap>B !gapinput@P1P1 := ToricVariety( P1P1 );B
1363
<A projective toric variety of dimension 2>
1364
!gapprompt@gap>B !gapinput@IsProjective( P1P1 );B
1365
true
1366
!gapprompt@gap>B !gapinput@IsComplete( P1P1 );B
1367
true
1368
!gapprompt@gap>B !gapinput@CoordinateRingOfTorus( P1P1, "x" );B
1369
Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )
1370
!gapprompt@gap>B !gapinput@IsVeryAmple( Polytope( P1P1 ) );B
1371
true
1372
!gapprompt@gap>B !gapinput@ProjectiveEmbedding( P1P1 );B
1373
[ |[ x1_*x2_ ]|, |[ x1_ ]|, |[ x1_*x2 ]|, |[ x2_ ]|,
1374
|[ 1 ]|, |[ x2 ]|, |[ x1*x2_ ]|, |[ x1 ]|, |[ x1*x2 ]| ]
1375
!gapprompt@gap>B !gapinput@Length( last );B
1376
9
1377
\end{Verbatim}
1378
}
1379
1380
}
1381
1382
}
1383
1384
1385
\chapter{\textcolor{Chapter }{Toric morphisms}}\label{Morphisms}
1386
\logpage{[ 7, 0, 0 ]}
1387
\hyperdef{L}{X7FA18F537F3F5237}{}
1388
{
1389
1390
\section{\textcolor{Chapter }{Toric morphisms: Category and Representations}}\label{Morphisms:Category}
1391
\logpage{[ 7, 1, 0 ]}
1392
\hyperdef{L}{X82A09A77805957FA}{}
1393
{
1394
1395
1396
\subsection{\textcolor{Chapter }{IsToricMorphism}}
1397
\logpage{[ 7, 1, 1 ]}\nobreak
1398
\hyperdef{L}{X85AC9E7B86C259AF}{}
1399
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsToricMorphism({\mdseries\slshape M})\index{IsToricMorphism@\texttt{IsToricMorphism}}
1400
\label{IsToricMorphism}
1401
}\hfill{\scriptsize (Category)}}\\
1402
\textbf{\indent Returns:\ }
1403
\texttt{true} or \texttt{false}
1404
1405
1406
1407
The \textsf{GAP} category of toric morphisms. A toric morphism is defined by a grid
1408
homomorphism, which is compatible with the fan structure of the two varieties. }
1409
1410
}
1411
1412
1413
\section{\textcolor{Chapter }{Toric morphisms: Properties}}\label{Morphisms:Properties}
1414
\logpage{[ 7, 2, 0 ]}
1415
\hyperdef{L}{X82BECE3A7EA231D1}{}
1416
{
1417
1418
1419
\subsection{\textcolor{Chapter }{IsMorphism}}
1420
\logpage{[ 7, 2, 1 ]}\nobreak
1421
\hyperdef{L}{X7F66120A814DC16B}{}
1422
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsMorphism({\mdseries\slshape morph})\index{IsMorphism@\texttt{IsMorphism}}
1423
\label{IsMorphism}
1424
}\hfill{\scriptsize (property)}}\\
1425
\textbf{\indent Returns:\ }
1426
\texttt{true} or \texttt{false}
1427
1428
1429
1430
Checks if the grid morphism \mbox{\texttt{\mdseries\slshape morph}} respects the fan structure. }
1431
1432
1433
1434
\subsection{\textcolor{Chapter }{IsProper}}
1435
\logpage{[ 7, 2, 2 ]}\nobreak
1436
\hyperdef{L}{X7B15A1848387B3C8}{}
1437
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsProper({\mdseries\slshape morph})\index{IsProper@\texttt{IsProper}}
1438
\label{IsProper}
1439
}\hfill{\scriptsize (property)}}\\
1440
\textbf{\indent Returns:\ }
1441
\texttt{true} or \texttt{false}
1442
1443
1444
1445
Checks if the defined morphism \mbox{\texttt{\mdseries\slshape morph}} is proper. }
1446
1447
}
1448
1449
1450
\section{\textcolor{Chapter }{Toric morphisms: Attributes}}\label{Morphisms:Attributes}
1451
\logpage{[ 7, 3, 0 ]}
1452
\hyperdef{L}{X79DB44C17CFE1F59}{}
1453
{
1454
1455
1456
\subsection{\textcolor{Chapter }{SourceObject}}
1457
\logpage{[ 7, 3, 1 ]}\nobreak
1458
\hyperdef{L}{X7912BF2F79064BB9}{}
1459
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{SourceObject({\mdseries\slshape morph})\index{SourceObject@\texttt{SourceObject}}
1460
\label{SourceObject}
1461
}\hfill{\scriptsize (attribute)}}\\
1462
\textbf{\indent Returns:\ }
1463
a variety
1464
1465
1466
1467
Returns the source object of the morphism \mbox{\texttt{\mdseries\slshape morph}}. This attribute is a must have. }
1468
1469
1470
1471
\subsection{\textcolor{Chapter }{UnderlyingGridMorphism}}
1472
\logpage{[ 7, 3, 2 ]}\nobreak
1473
\hyperdef{L}{X81558ABE8360E43D}{}
1474
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingGridMorphism({\mdseries\slshape morph})\index{UnderlyingGridMorphism@\texttt{UnderlyingGridMorphism}}
1475
\label{UnderlyingGridMorphism}
1476
}\hfill{\scriptsize (attribute)}}\\
1477
\textbf{\indent Returns:\ }
1478
a map
1479
1480
1481
1482
Returns the grid map which defines \mbox{\texttt{\mdseries\slshape morph}}. }
1483
1484
1485
1486
\subsection{\textcolor{Chapter }{ToricImageObject}}
1487
\logpage{[ 7, 3, 3 ]}\nobreak
1488
\hyperdef{L}{X7F82AD6D7A967E25}{}
1489
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricImageObject({\mdseries\slshape morph})\index{ToricImageObject@\texttt{ToricImageObject}}
1490
\label{ToricImageObject}
1491
}\hfill{\scriptsize (attribute)}}\\
1492
\textbf{\indent Returns:\ }
1493
a variety
1494
1495
1496
1497
Returns the variety which is created by the fan which is the image of the fan
1498
of the source of \mbox{\texttt{\mdseries\slshape morph}}. This is not an image in the usual sense, but a toric image. }
1499
1500
1501
1502
\subsection{\textcolor{Chapter }{RangeObject}}
1503
\logpage{[ 7, 3, 4 ]}\nobreak
1504
\hyperdef{L}{X7ABADFCD80C507FB}{}
1505
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RangeObject({\mdseries\slshape morph})\index{RangeObject@\texttt{RangeObject}}
1506
\label{RangeObject}
1507
}\hfill{\scriptsize (attribute)}}\\
1508
\textbf{\indent Returns:\ }
1509
a variety
1510
1511
1512
1513
Returns the range of the morphism \mbox{\texttt{\mdseries\slshape morph}}. If no range is given (yes, this is possible), the method returns the image. }
1514
1515
1516
1517
\subsection{\textcolor{Chapter }{MorphismOnWeilDivisorGroup}}
1518
\logpage{[ 7, 3, 5 ]}\nobreak
1519
\hyperdef{L}{X81B87EE486EFA0A4}{}
1520
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MorphismOnWeilDivisorGroup({\mdseries\slshape morph})\index{MorphismOnWeilDivisorGroup@\texttt{MorphismOnWeilDivisorGroup}}
1521
\label{MorphismOnWeilDivisorGroup}
1522
}\hfill{\scriptsize (attribute)}}\\
1523
\textbf{\indent Returns:\ }
1524
a morphism
1525
1526
1527
1528
Returns the associated morphism between the divisor group of the range of \mbox{\texttt{\mdseries\slshape morph}} and the divisor group of the source. }
1529
1530
1531
1532
\subsection{\textcolor{Chapter }{ClassGroup (for toric morphisms)}}
1533
\logpage{[ 7, 3, 6 ]}\nobreak
1534
\hyperdef{L}{X7F542C0880E1598D}{}
1535
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ClassGroup({\mdseries\slshape morph})\index{ClassGroup@\texttt{ClassGroup}!for toric morphisms}
1536
\label{ClassGroup:for toric morphisms}
1537
}\hfill{\scriptsize (attribute)}}\\
1538
\textbf{\indent Returns:\ }
1539
a morphism
1540
1541
1542
1543
Returns the associated morphism between the class groups of source and range
1544
of the morphism \mbox{\texttt{\mdseries\slshape morph}} }
1545
1546
1547
1548
\subsection{\textcolor{Chapter }{MorphismOnCartierDivisorGroup}}
1549
\logpage{[ 7, 3, 7 ]}\nobreak
1550
\hyperdef{L}{X782D88777AA3E1F4}{}
1551
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MorphismOnCartierDivisorGroup({\mdseries\slshape morph})\index{MorphismOnCartierDivisorGroup@\texttt{MorphismOnCartierDivisorGroup}}
1552
\label{MorphismOnCartierDivisorGroup}
1553
}\hfill{\scriptsize (attribute)}}\\
1554
\textbf{\indent Returns:\ }
1555
a morphism
1556
1557
1558
1559
Returns the associated morphism between the Cartier divisor groups of source
1560
and range of the morphism \mbox{\texttt{\mdseries\slshape morph}} }
1561
1562
1563
1564
\subsection{\textcolor{Chapter }{PicardGroup (for toric morphisms)}}
1565
\logpage{[ 7, 3, 8 ]}\nobreak
1566
\hyperdef{L}{X804B025C873DF32C}{}
1567
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PicardGroup({\mdseries\slshape morph})\index{PicardGroup@\texttt{PicardGroup}!for toric morphisms}
1568
\label{PicardGroup:for toric morphisms}
1569
}\hfill{\scriptsize (attribute)}}\\
1570
\textbf{\indent Returns:\ }
1571
a morphism
1572
1573
1574
1575
Returns the associated morphism between the class groups of source and range
1576
of the morphism \mbox{\texttt{\mdseries\slshape morph}} }
1577
1578
}
1579
1580
1581
\section{\textcolor{Chapter }{Toric morphisms: Methods}}\label{Morphisms:Methods}
1582
\logpage{[ 7, 4, 0 ]}
1583
\hyperdef{L}{X7DE931AA84720706}{}
1584
{
1585
1586
1587
\subsection{\textcolor{Chapter }{UnderlyingListList}}
1588
\logpage{[ 7, 4, 1 ]}\nobreak
1589
\hyperdef{L}{X7FE514BB782DD216}{}
1590
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingListList({\mdseries\slshape morph})\index{UnderlyingListList@\texttt{UnderlyingListList}}
1591
\label{UnderlyingListList}
1592
}\hfill{\scriptsize (attribute)}}\\
1593
\textbf{\indent Returns:\ }
1594
a list
1595
1596
1597
1598
Returns a list of list which represents the grid homomorphism. }
1599
1600
}
1601
1602
1603
\section{\textcolor{Chapter }{Toric morphisms: Constructors}}\label{Morphisms:Constructors}
1604
\logpage{[ 7, 5, 0 ]}
1605
\hyperdef{L}{X7D94D43D8463F158}{}
1606
{
1607
1608
1609
\subsection{\textcolor{Chapter }{ToricMorphism (for a source and a matrix)}}
1610
\logpage{[ 7, 5, 1 ]}\nobreak
1611
\hyperdef{L}{X7B53B2C67B98043E}{}
1612
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricMorphism({\mdseries\slshape vari, lis})\index{ToricMorphism@\texttt{ToricMorphism}!for a source and a matrix}
1613
\label{ToricMorphism:for a source and a matrix}
1614
}\hfill{\scriptsize (operation)}}\\
1615
\textbf{\indent Returns:\ }
1616
a morphism
1617
1618
1619
1620
Returns the toric morphism with source \mbox{\texttt{\mdseries\slshape vari}} which is represented by the matrix \mbox{\texttt{\mdseries\slshape lis}}. The range is set to the image. }
1621
1622
1623
1624
\subsection{\textcolor{Chapter }{ToricMorphism (for a source, matrix and target)}}
1625
\logpage{[ 7, 5, 2 ]}\nobreak
1626
\hyperdef{L}{X7AC924D486FADC47}{}
1627
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricMorphism({\mdseries\slshape vari, lis, vari2})\index{ToricMorphism@\texttt{ToricMorphism}!for a source, matrix and target}
1628
\label{ToricMorphism:for a source, matrix and target}
1629
}\hfill{\scriptsize (operation)}}\\
1630
\textbf{\indent Returns:\ }
1631
a morphism
1632
1633
1634
1635
Returns the toric morphism with source \mbox{\texttt{\mdseries\slshape vari}} and range \mbox{\texttt{\mdseries\slshape vari2}} which is represented by the matrix \mbox{\texttt{\mdseries\slshape lis}}. }
1636
1637
}
1638
1639
1640
\section{\textcolor{Chapter }{Toric morphisms: Examples}}\label{Morphisms:Examples}
1641
\logpage{[ 7, 6, 0 ]}
1642
\hyperdef{L}{X83CE579A7B2021DE}{}
1643
{
1644
1645
\subsection{\textcolor{Chapter }{Morphism between toric varieties and their class groups}}\label{MorphismExample}
1646
\logpage{[ 7, 6, 1 ]}
1647
\hyperdef{L}{X7D1DD8EA8098C432}{}
1648
{
1649
1650
\begin{Verbatim}[commandchars=!@E,fontsize=\small,frame=single,label=Example]
1651
!gapprompt@gap>E !gapinput@P1 := Polytope([[0],[1]]);E
1652
<A polytope in |R^1>
1653
!gapprompt@gap>E !gapinput@P2 := Polytope([[0,0],[0,1],[1,0]]);E
1654
<A polytope in |R^2>
1655
!gapprompt@gap>E !gapinput@P1 := ToricVariety( P1 );E
1656
<A projective toric variety of dimension 1>
1657
!gapprompt@gap>E !gapinput@P2 := ToricVariety( P2 );E
1658
<A projective toric variety of dimension 2>
1659
!gapprompt@gap>E !gapinput@P1P2 := P1*P2;E
1660
<A projective toric variety of dimension 3
1661
which is a product of 2 toric varieties>
1662
!gapprompt@gap>E !gapinput@ClassGroup( P1 );E
1663
<A non-torsion left module presented by 1 relation for 2 generators>
1664
!gapprompt@gap>E !gapinput@Display(ByASmallerPresentation(last));E
1665
Z^(1 x 1)
1666
!gapprompt@gap>E !gapinput@ClassGroup( P2 );E
1667
<A non-torsion left module presented by 2 relations for 3 generators>
1668
!gapprompt@gap>E !gapinput@Display(ByASmallerPresentation(last));E
1669
Z^(1 x 1)
1670
!gapprompt@gap>E !gapinput@ClassGroup( P1P2 );E
1671
<A free left module of rank 2 on free generators>
1672
!gapprompt@gap>E !gapinput@Display( last );E
1673
Z^(1 x 2)
1674
!gapprompt@gap>E !gapinput@PicardGroup( P1P2 );E
1675
<A free left module of rank 2 on free generators>
1676
!gapprompt@gap>E !gapinput@P1P2;E
1677
<A projective smooth toric variety of dimension 3
1678
which is a product of 2 toric varieties>
1679
!gapprompt@gap>E !gapinput@P2P1:=P2*P1;E
1680
<A projective toric variety of dimension 3
1681
which is a product of 2 toric varieties>
1682
!gapprompt@gap>E !gapinput@M := [[0,0,1],[1,0,0],[0,1,0]];E
1683
[ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ]
1684
!gapprompt@gap>E !gapinput@M := ToricMorphism(P1P2,M,P2P1);E
1685
<A "homomorphism" of right objects>
1686
!gapprompt@gap>E !gapinput@IsMorphism(M);E
1687
true
1688
!gapprompt@gap>E !gapinput@ClassGroup(M);E
1689
<A homomorphism of left modules>
1690
!gapprompt@gap>E !gapinput@Display(last);E
1691
[ [ 0, 1 ],
1692
[ 1, 0 ] ]
1693
1694
the map is currently represented by the above 2 x 2 matrix
1695
!gapprompt@gap>E !gapinput@ByASmallerPresentation(ClassGroup(M));E
1696
<A non-zero homomorphism of left modules>
1697
!gapprompt@gap>E !gapinput@Display(last);E
1698
[ [ 0, 1 ],
1699
[ 1, 0 ] ]
1700
1701
the map is currently represented by the above 2 x 2 matrix
1702
\end{Verbatim}
1703
}
1704
1705
}
1706
1707
}
1708
1709
1710
\chapter{\textcolor{Chapter }{Toric divisors}}\label{Divisors}
1711
\logpage{[ 8, 0, 0 ]}
1712
\hyperdef{L}{X7FDB76897833225A}{}
1713
{
1714
1715
\section{\textcolor{Chapter }{Toric divisors: Category and Representations}}\label{Divisors:Category}
1716
\logpage{[ 8, 1, 0 ]}
1717
\hyperdef{L}{X7F19CA2285A48A77}{}
1718
{
1719
1720
1721
\subsection{\textcolor{Chapter }{IsToricDivisor}}
1722
\logpage{[ 8, 1, 1 ]}\nobreak
1723
\hyperdef{L}{X8664662078263B5A}{}
1724
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsToricDivisor({\mdseries\slshape M})\index{IsToricDivisor@\texttt{IsToricDivisor}}
1725
\label{IsToricDivisor}
1726
}\hfill{\scriptsize (Category)}}\\
1727
\textbf{\indent Returns:\ }
1728
\texttt{true} or \texttt{false}
1729
1730
1731
1732
The \textsf{GAP} category of torus invariant Weil divisors. }
1733
1734
}
1735
1736
1737
\section{\textcolor{Chapter }{Toric divisors: Properties}}\label{Divisors:Properties}
1738
\logpage{[ 8, 2, 0 ]}
1739
\hyperdef{L}{X7E508A068393A363}{}
1740
{
1741
1742
1743
\subsection{\textcolor{Chapter }{IsCartier}}
1744
\logpage{[ 8, 2, 1 ]}\nobreak
1745
\hyperdef{L}{X7E721696878A61F4}{}
1746
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsCartier({\mdseries\slshape divi})\index{IsCartier@\texttt{IsCartier}}
1747
\label{IsCartier}
1748
}\hfill{\scriptsize (property)}}\\
1749
\textbf{\indent Returns:\ }
1750
\texttt{true} or \texttt{false}
1751
1752
1753
1754
Checks if the torus invariant Weil divisor \mbox{\texttt{\mdseries\slshape divi}} is Cartier i.e. if it is locally principal. }
1755
1756
1757
1758
\subsection{\textcolor{Chapter }{IsPrincipal}}
1759
\logpage{[ 8, 2, 2 ]}\nobreak
1760
\hyperdef{L}{X84DE6ECE85F7D2F2}{}
1761
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsPrincipal({\mdseries\slshape divi})\index{IsPrincipal@\texttt{IsPrincipal}}
1762
\label{IsPrincipal}
1763
}\hfill{\scriptsize (property)}}\\
1764
\textbf{\indent Returns:\ }
1765
\texttt{true} or \texttt{false}
1766
1767
1768
1769
Checks if the torus invariant Weil divisor \mbox{\texttt{\mdseries\slshape divi}} is principal which in the toric invariant case means that it is the divisor of
1770
a character. }
1771
1772
1773
1774
\subsection{\textcolor{Chapter }{IsPrimedivisor}}
1775
\logpage{[ 8, 2, 3 ]}\nobreak
1776
\hyperdef{L}{X844EFF227C868438}{}
1777
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsPrimedivisor({\mdseries\slshape divi})\index{IsPrimedivisor@\texttt{IsPrimedivisor}}
1778
\label{IsPrimedivisor}
1779
}\hfill{\scriptsize (property)}}\\
1780
\textbf{\indent Returns:\ }
1781
\texttt{true} or \texttt{false}
1782
1783
1784
1785
Checks if the Weil divisor \mbox{\texttt{\mdseries\slshape divi}} represents a prime divisor, i.e. if it is a standard generator of the divisor
1786
group. }
1787
1788
1789
1790
\subsection{\textcolor{Chapter }{IsBasepointFree}}
1791
\logpage{[ 8, 2, 4 ]}\nobreak
1792
\hyperdef{L}{X7AB6B5C77DFB740B}{}
1793
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsBasepointFree({\mdseries\slshape divi})\index{IsBasepointFree@\texttt{IsBasepointFree}}
1794
\label{IsBasepointFree}
1795
}\hfill{\scriptsize (property)}}\\
1796
\textbf{\indent Returns:\ }
1797
\texttt{true} or \texttt{false}
1798
1799
1800
1801
Checks if the divisor \mbox{\texttt{\mdseries\slshape divi}} is basepoint free. What else? }
1802
1803
1804
1805
\subsection{\textcolor{Chapter }{IsAmple}}
1806
\logpage{[ 8, 2, 5 ]}\nobreak
1807
\hyperdef{L}{X7F5062AA844AEC55}{}
1808
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsAmple({\mdseries\slshape divi})\index{IsAmple@\texttt{IsAmple}}
1809
\label{IsAmple}
1810
}\hfill{\scriptsize (property)}}\\
1811
\textbf{\indent Returns:\ }
1812
\texttt{true} or \texttt{false}
1813
1814
1815
1816
Checks if the divisor \mbox{\texttt{\mdseries\slshape divi}} is ample, i.e. if it is colored red, yellow and green. }
1817
1818
1819
1820
\subsection{\textcolor{Chapter }{IsVeryAmple}}
1821
\logpage{[ 8, 2, 6 ]}\nobreak
1822
\hyperdef{L}{X80A58559802BB02E}{}
1823
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsVeryAmple({\mdseries\slshape divi})\index{IsVeryAmple@\texttt{IsVeryAmple}}
1824
\label{IsVeryAmple}
1825
}\hfill{\scriptsize (property)}}\\
1826
\textbf{\indent Returns:\ }
1827
\texttt{true} or \texttt{false}
1828
1829
1830
1831
Checks if the divisor \mbox{\texttt{\mdseries\slshape divi}} is very ample. }
1832
1833
}
1834
1835
1836
\section{\textcolor{Chapter }{Toric divisors: Attributes}}\label{Divisors:Attributes}
1837
\logpage{[ 8, 3, 0 ]}
1838
\hyperdef{L}{X853500FD794001B8}{}
1839
{
1840
1841
1842
\subsection{\textcolor{Chapter }{CartierData}}
1843
\logpage{[ 8, 3, 1 ]}\nobreak
1844
\hyperdef{L}{X7F546017860701EA}{}
1845
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CartierData({\mdseries\slshape divi})\index{CartierData@\texttt{CartierData}}
1846
\label{CartierData}
1847
}\hfill{\scriptsize (attribute)}}\\
1848
\textbf{\indent Returns:\ }
1849
a list
1850
1851
1852
1853
Returns the Cartier data of the divisor \mbox{\texttt{\mdseries\slshape divi}}, if it is Cartier, and fails otherwise. }
1854
1855
1856
1857
\subsection{\textcolor{Chapter }{CharacterOfPrincipalDivisor}}
1858
\logpage{[ 8, 3, 2 ]}\nobreak
1859
\hyperdef{L}{X796415858436B32D}{}
1860
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CharacterOfPrincipalDivisor({\mdseries\slshape divi})\index{CharacterOfPrincipalDivisor@\texttt{CharacterOfPrincipalDivisor}}
1861
\label{CharacterOfPrincipalDivisor}
1862
}\hfill{\scriptsize (attribute)}}\\
1863
\textbf{\indent Returns:\ }
1864
an element
1865
1866
1867
1868
Returns the character corresponding to principal divisor \mbox{\texttt{\mdseries\slshape divi}}. }
1869
1870
1871
1872
\subsection{\textcolor{Chapter }{ToricVarietyOfDivisor}}
1873
\logpage{[ 8, 3, 3 ]}\nobreak
1874
\hyperdef{L}{X80FA3ADA81640191}{}
1875
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ToricVarietyOfDivisor({\mdseries\slshape divi})\index{ToricVarietyOfDivisor@\texttt{ToricVarietyOfDivisor}}
1876
\label{ToricVarietyOfDivisor}
1877
}\hfill{\scriptsize (attribute)}}\\
1878
\textbf{\indent Returns:\ }
1879
a variety
1880
1881
1882
1883
Returns the closure of the torus orbit corresponding to the prime divisor \mbox{\texttt{\mdseries\slshape divi}}. Not implemented for other divisors. Maybe we should add the support here. Is
1884
this even a toric variety? Exercise left to the reader. }
1885
1886
1887
1888
\subsection{\textcolor{Chapter }{ClassOfDivisor}}
1889
\logpage{[ 8, 3, 4 ]}\nobreak
1890
\hyperdef{L}{X7C3691B4816CF3E9}{}
1891
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ClassOfDivisor({\mdseries\slshape divi})\index{ClassOfDivisor@\texttt{ClassOfDivisor}}
1892
\label{ClassOfDivisor}
1893
}\hfill{\scriptsize (attribute)}}\\
1894
\textbf{\indent Returns:\ }
1895
an element
1896
1897
1898
1899
Returns the class group element corresponding to the divisor \mbox{\texttt{\mdseries\slshape divi}}. }
1900
1901
1902
1903
\subsection{\textcolor{Chapter }{PolytopeOfDivisor}}
1904
\logpage{[ 8, 3, 5 ]}\nobreak
1905
\hyperdef{L}{X85ED82DC79E2F1CE}{}
1906
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PolytopeOfDivisor({\mdseries\slshape divi})\index{PolytopeOfDivisor@\texttt{PolytopeOfDivisor}}
1907
\label{PolytopeOfDivisor}
1908
}\hfill{\scriptsize (attribute)}}\\
1909
\textbf{\indent Returns:\ }
1910
a polytope
1911
1912
1913
1914
Returns the polytope corresponding to the divisor \mbox{\texttt{\mdseries\slshape divi}}. }
1915
1916
1917
1918
\subsection{\textcolor{Chapter }{BasisOfGlobalSections}}
1919
\logpage{[ 8, 3, 6 ]}\nobreak
1920
\hyperdef{L}{X7A7853288166B329}{}
1921
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{BasisOfGlobalSections({\mdseries\slshape divi})\index{BasisOfGlobalSections@\texttt{BasisOfGlobalSections}}
1922
\label{BasisOfGlobalSections}
1923
}\hfill{\scriptsize (attribute)}}\\
1924
\textbf{\indent Returns:\ }
1925
a list
1926
1927
1928
1929
Returns a basis of the global section module of the quasi-coherent sheaf of
1930
the divisor \mbox{\texttt{\mdseries\slshape divi}}. }
1931
1932
1933
1934
\subsection{\textcolor{Chapter }{IntegerForWhichIsSureVeryAmple}}
1935
\logpage{[ 8, 3, 7 ]}\nobreak
1936
\hyperdef{L}{X87DA4EEA824F4175}{}
1937
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IntegerForWhichIsSureVeryAmple({\mdseries\slshape divi})\index{IntegerForWhichIsSureVeryAmple@\texttt{IntegerForWhichIsSureVeryAmple}}
1938
\label{IntegerForWhichIsSureVeryAmple}
1939
}\hfill{\scriptsize (attribute)}}\\
1940
\textbf{\indent Returns:\ }
1941
an integer
1942
1943
1944
1945
Returns an integer which, to be multiplied with the ample divisor \mbox{\texttt{\mdseries\slshape divi}}, someone gets a very ample divisor. }
1946
1947
1948
1949
\subsection{\textcolor{Chapter }{AmbientToricVariety (for toric divisors)}}
1950
\logpage{[ 8, 3, 8 ]}\nobreak
1951
\hyperdef{L}{X809666867CB2FC87}{}
1952
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AmbientToricVariety({\mdseries\slshape divi})\index{AmbientToricVariety@\texttt{AmbientToricVariety}!for toric divisors}
1953
\label{AmbientToricVariety:for toric divisors}
1954
}\hfill{\scriptsize (attribute)}}\\
1955
\textbf{\indent Returns:\ }
1956
a variety
1957
1958
1959
1960
Returns the containing variety of the prime divisors of the divisor \mbox{\texttt{\mdseries\slshape divi}}. }
1961
1962
1963
1964
\subsection{\textcolor{Chapter }{UnderlyingGroupElement}}
1965
\logpage{[ 8, 3, 9 ]}\nobreak
1966
\hyperdef{L}{X7D42C40B7B4B06E0}{}
1967
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingGroupElement({\mdseries\slshape divi})\index{UnderlyingGroupElement@\texttt{UnderlyingGroupElement}}
1968
\label{UnderlyingGroupElement}
1969
}\hfill{\scriptsize (attribute)}}\\
1970
\textbf{\indent Returns:\ }
1971
an element
1972
1973
1974
1975
Returns an element which represents the divisor \mbox{\texttt{\mdseries\slshape divi}} in the Weil group. }
1976
1977
1978
1979
\subsection{\textcolor{Chapter }{UnderlyingToricVariety (for prime divisors)}}
1980
\logpage{[ 8, 3, 10 ]}\nobreak
1981
\hyperdef{L}{X81DF09097AEA7A0D}{}
1982
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{UnderlyingToricVariety({\mdseries\slshape divi})\index{UnderlyingToricVariety@\texttt{UnderlyingToricVariety}!for prime divisors}
1983
\label{UnderlyingToricVariety:for prime divisors}
1984
}\hfill{\scriptsize (attribute)}}\\
1985
\textbf{\indent Returns:\ }
1986
a variety
1987
1988
1989
1990
Returns the closure of the torus orbit corresponding to the prime divisor \mbox{\texttt{\mdseries\slshape divi}}. Not implemented for other divisors. Maybe we should add the support here. Is
1991
this even a toric variety? Exercise left to the reader. }
1992
1993
1994
1995
\subsection{\textcolor{Chapter }{DegreeOfDivisor}}
1996
\logpage{[ 8, 3, 11 ]}\nobreak
1997
\hyperdef{L}{X7A346588871296FB}{}
1998
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DegreeOfDivisor({\mdseries\slshape divi})\index{DegreeOfDivisor@\texttt{DegreeOfDivisor}}
1999
\label{DegreeOfDivisor}
2000
}\hfill{\scriptsize (attribute)}}\\
2001
\textbf{\indent Returns:\ }
2002
an integer
2003
2004
2005
2006
Returns the degree of the divisor \mbox{\texttt{\mdseries\slshape divi}}. }
2007
2008
2009
2010
\subsection{\textcolor{Chapter }{MonomsOfCoxRingOfDegree}}
2011
\logpage{[ 8, 3, 12 ]}\nobreak
2012
\hyperdef{L}{X838F54D8817F6066}{}
2013
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MonomsOfCoxRingOfDegree({\mdseries\slshape divi})\index{MonomsOfCoxRingOfDegree@\texttt{MonomsOfCoxRingOfDegree}}
2014
\label{MonomsOfCoxRingOfDegree}
2015
}\hfill{\scriptsize (attribute)}}\\
2016
\textbf{\indent Returns:\ }
2017
a list
2018
2019
2020
2021
Returns the variety corresponding to the polytope of the divisor \mbox{\texttt{\mdseries\slshape divi}}. }
2022
2023
2024
2025
\subsection{\textcolor{Chapter }{CoxRingOfTargetOfDivisorMorphism}}
2026
\logpage{[ 8, 3, 13 ]}\nobreak
2027
\hyperdef{L}{X831C20A585952B08}{}
2028
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CoxRingOfTargetOfDivisorMorphism({\mdseries\slshape divi})\index{CoxRingOfTargetOfDivisorMorphism@\texttt{CoxRingOfTargetOfDivisorMorphism}}
2029
\label{CoxRingOfTargetOfDivisorMorphism}
2030
}\hfill{\scriptsize (attribute)}}\\
2031
\textbf{\indent Returns:\ }
2032
a ring
2033
2034
2035
2036
A basepoint free divisor \mbox{\texttt{\mdseries\slshape divi}} defines a map from its ambient variety in a projective space. This method
2037
returns the cox ring of such a projective space. }
2038
2039
2040
2041
\subsection{\textcolor{Chapter }{RingMorphismOfDivisor}}
2042
\logpage{[ 8, 3, 14 ]}\nobreak
2043
\hyperdef{L}{X786F05507F8026D5}{}
2044
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RingMorphismOfDivisor({\mdseries\slshape divi})\index{RingMorphismOfDivisor@\texttt{RingMorphismOfDivisor}}
2045
\label{RingMorphismOfDivisor}
2046
}\hfill{\scriptsize (attribute)}}\\
2047
\textbf{\indent Returns:\ }
2048
a ring
2049
2050
2051
2052
A basepoint free divisor \mbox{\texttt{\mdseries\slshape divi}} defines a map from its ambient variety in a projective space. This method
2053
returns the morphism between the cox ring of this projective space to the cox
2054
ring of the ambient variety of \mbox{\texttt{\mdseries\slshape divi}}. }
2055
2056
}
2057
2058
2059
\section{\textcolor{Chapter }{Toric divisors: Methods}}\label{divisors:Methods}
2060
\logpage{[ 8, 4, 0 ]}
2061
\hyperdef{L}{X868C3EF185DDF025}{}
2062
{
2063
2064
2065
\subsection{\textcolor{Chapter }{VeryAmpleMultiple}}
2066
\logpage{[ 8, 4, 1 ]}\nobreak
2067
\hyperdef{L}{X79410AC7794A3EE7}{}
2068
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{VeryAmpleMultiple({\mdseries\slshape divi})\index{VeryAmpleMultiple@\texttt{VeryAmpleMultiple}}
2069
\label{VeryAmpleMultiple}
2070
}\hfill{\scriptsize (operation)}}\\
2071
\textbf{\indent Returns:\ }
2072
a divisor
2073
2074
2075
2076
Returns a very ample multiple of the ample divisor \mbox{\texttt{\mdseries\slshape divi}}. Will fail if divisor is not ample. }
2077
2078
2079
2080
\subsection{\textcolor{Chapter }{CharactersForClosedEmbedding}}
2081
\logpage{[ 8, 4, 2 ]}\nobreak
2082
\hyperdef{L}{X853616578245BF1A}{}
2083
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CharactersForClosedEmbedding({\mdseries\slshape divi})\index{CharactersForClosedEmbedding@\texttt{CharactersForClosedEmbedding}}
2084
\label{CharactersForClosedEmbedding}
2085
}\hfill{\scriptsize (operation)}}\\
2086
\textbf{\indent Returns:\ }
2087
a list
2088
2089
2090
2091
Returns characters for closed embedding defined via the ample divisor \mbox{\texttt{\mdseries\slshape divi}}. Fails if divisor is not ample. }
2092
2093
2094
2095
\subsection{\textcolor{Chapter }{MonomsOfCoxRingOfDegree (for an homalg element)}}
2096
\logpage{[ 8, 4, 3 ]}\nobreak
2097
\hyperdef{L}{X7D890CF4845178FE}{}
2098
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MonomsOfCoxRingOfDegree({\mdseries\slshape vari, elem})\index{MonomsOfCoxRingOfDegree@\texttt{MonomsOfCoxRingOfDegree}!for an homalg element}
2099
\label{MonomsOfCoxRingOfDegree:for an homalg element}
2100
}\hfill{\scriptsize (operation)}}\\
2101
\textbf{\indent Returns:\ }
2102
a list
2103
2104
2105
2106
Returns the monoms of the Cox ring of the variety \mbox{\texttt{\mdseries\slshape vari}} with degree to the class group element \mbox{\texttt{\mdseries\slshape elem}}. The variable \mbox{\texttt{\mdseries\slshape elem}} can also be a list. }
2107
2108
2109
2110
\subsection{\textcolor{Chapter }{DivisorOfGivenClass}}
2111
\logpage{[ 8, 4, 4 ]}\nobreak
2112
\hyperdef{L}{X7E66CB878743D6DF}{}
2113
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DivisorOfGivenClass({\mdseries\slshape vari, elem})\index{DivisorOfGivenClass@\texttt{DivisorOfGivenClass}}
2114
\label{DivisorOfGivenClass}
2115
}\hfill{\scriptsize (operation)}}\\
2116
\textbf{\indent Returns:\ }
2117
a list
2118
2119
2120
2121
Computes a divisor of the variety \mbox{\texttt{\mdseries\slshape divi}} which is member of the divisor class presented by \mbox{\texttt{\mdseries\slshape elem}}. The variable \mbox{\texttt{\mdseries\slshape elem}} can be a homalg element or a list presenting an element. }
2122
2123
2124
2125
\subsection{\textcolor{Chapter }{AddDivisorToItsAmbientVariety}}
2126
\logpage{[ 8, 4, 5 ]}\nobreak
2127
\hyperdef{L}{X7A19D0127ECE5EE1}{}
2128
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AddDivisorToItsAmbientVariety({\mdseries\slshape divi})\index{AddDivisorToItsAmbientVariety@\texttt{AddDivisorToItsAmbientVariety}}
2129
\label{AddDivisorToItsAmbientVariety}
2130
}\hfill{\scriptsize (operation)}}\\
2131
\textbf{\indent Returns:\ }
2132
2133
2134
2135
2136
Adds the divisor \mbox{\texttt{\mdseries\slshape divi}} to the Weil divisor list of its ambient variety. }
2137
2138
2139
2140
\subsection{\textcolor{Chapter }{Polytope (for toric divisors)}}
2141
\logpage{[ 8, 4, 6 ]}\nobreak
2142
\hyperdef{L}{X7BA1C5A27CC75C38}{}
2143
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Polytope({\mdseries\slshape divi})\index{Polytope@\texttt{Polytope}!for toric divisors}
2144
\label{Polytope:for toric divisors}
2145
}\hfill{\scriptsize (operation)}}\\
2146
\textbf{\indent Returns:\ }
2147
a polytope
2148
2149
2150
2151
Returns the polytope of the divisor \mbox{\texttt{\mdseries\slshape divi}}. Another name for PolytopeOfDivisor for compatibility and shortness. }
2152
2153
2154
2155
\subsection{\textcolor{Chapter }{+}}
2156
\logpage{[ 8, 4, 7 ]}\nobreak
2157
\hyperdef{L}{X7F2703417F270341}{}
2158
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{+({\mdseries\slshape divi1, divi2})\index{+@\texttt{+}}
2159
\label{+}
2160
}\hfill{\scriptsize (operation)}}\\
2161
\textbf{\indent Returns:\ }
2162
a divisor
2163
2164
2165
2166
Returns the sum of the divisors \mbox{\texttt{\mdseries\slshape divi1}} and \mbox{\texttt{\mdseries\slshape divi2}}. }
2167
2168
2169
2170
\subsection{\textcolor{Chapter }{-}}
2171
\logpage{[ 8, 4, 8 ]}\nobreak
2172
\hyperdef{L}{X81B1391281B13912}{}
2173
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{-({\mdseries\slshape divi1, divi2})\index{-@\texttt{-}}
2174
\label{-}
2175
}\hfill{\scriptsize (operation)}}\\
2176
\textbf{\indent Returns:\ }
2177
a divisor
2178
2179
2180
2181
Returns the divisor \mbox{\texttt{\mdseries\slshape divi1}} minus \mbox{\texttt{\mdseries\slshape divi2}}. }
2182
2183
2184
2185
\subsection{\textcolor{Chapter }{* (for toric divisors)}}
2186
\logpage{[ 8, 4, 9 ]}\nobreak
2187
\hyperdef{L}{X7A14A08D79AABCC5}{}
2188
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{*({\mdseries\slshape k, divi})\index{*@\texttt{*}!for toric divisors}
2189
\label{*:for toric divisors}
2190
}\hfill{\scriptsize (operation)}}\\
2191
\textbf{\indent Returns:\ }
2192
a divisor
2193
2194
2195
2196
Returns \mbox{\texttt{\mdseries\slshape k}} times the divisor \mbox{\texttt{\mdseries\slshape divi}}. }
2197
2198
}
2199
2200
2201
\section{\textcolor{Chapter }{Toric divisors: Constructors}}\label{Divisors:Constructors}
2202
\logpage{[ 8, 5, 0 ]}
2203
\hyperdef{L}{X863E167D799CBE31}{}
2204
{
2205
2206
2207
\subsection{\textcolor{Chapter }{DivisorOfCharacter}}
2208
\logpage{[ 8, 5, 1 ]}\nobreak
2209
\hyperdef{L}{X7A1062647B359F8A}{}
2210
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DivisorOfCharacter({\mdseries\slshape elem, vari})\index{DivisorOfCharacter@\texttt{DivisorOfCharacter}}
2211
\label{DivisorOfCharacter}
2212
}\hfill{\scriptsize (operation)}}\\
2213
\textbf{\indent Returns:\ }
2214
a divisor
2215
2216
2217
2218
Returns the divisor of the toric variety \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the character \mbox{\texttt{\mdseries\slshape elem}}. }
2219
2220
2221
2222
\subsection{\textcolor{Chapter }{DivisorOfCharacter (for a list of integers)}}
2223
\logpage{[ 8, 5, 2 ]}\nobreak
2224
\hyperdef{L}{X7C2AF9FC7AEA18BE}{}
2225
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DivisorOfCharacter({\mdseries\slshape lis, vari})\index{DivisorOfCharacter@\texttt{DivisorOfCharacter}!for a list of integers}
2226
\label{DivisorOfCharacter:for a list of integers}
2227
}\hfill{\scriptsize (operation)}}\\
2228
\textbf{\indent Returns:\ }
2229
a divisor
2230
2231
2232
2233
Returns the divisor of the toric variety \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the character which is created by the list \mbox{\texttt{\mdseries\slshape lis}}. }
2234
2235
2236
2237
\subsection{\textcolor{Chapter }{CreateDivisor (for a homalg element)}}
2238
\logpage{[ 8, 5, 3 ]}\nobreak
2239
\hyperdef{L}{X7F24DB367B7BAAB4}{}
2240
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CreateDivisor({\mdseries\slshape elem, vari})\index{CreateDivisor@\texttt{CreateDivisor}!for a homalg element}
2241
\label{CreateDivisor:for a homalg element}
2242
}\hfill{\scriptsize (operation)}}\\
2243
\textbf{\indent Returns:\ }
2244
a divisor
2245
2246
2247
2248
Returns the divisor of the toric variety \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the Weil group element \mbox{\texttt{\mdseries\slshape elem}}. }
2249
2250
2251
2252
\subsection{\textcolor{Chapter }{CreateDivisor (for a list of integers)}}
2253
\logpage{[ 8, 5, 4 ]}\nobreak
2254
\hyperdef{L}{X87477D82832DDE3A}{}
2255
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{CreateDivisor({\mdseries\slshape lis, vari})\index{CreateDivisor@\texttt{CreateDivisor}!for a list of integers}
2256
\label{CreateDivisor:for a list of integers}
2257
}\hfill{\scriptsize (operation)}}\\
2258
\textbf{\indent Returns:\ }
2259
a divisor
2260
2261
2262
2263
Returns the divisor of the toric variety \mbox{\texttt{\mdseries\slshape vari}} which corresponds to the Weil group element which is created by the list \mbox{\texttt{\mdseries\slshape lis}}. }
2264
2265
}
2266
2267
2268
\section{\textcolor{Chapter }{Toric divisors: Examples}}\label{Divisors:Examples}
2269
\logpage{[ 8, 6, 0 ]}
2270
\hyperdef{L}{X7FE84D6F87076DA0}{}
2271
{
2272
2273
\subsection{\textcolor{Chapter }{Divisors on a toric variety}}\label{DivisorsExampleSubsection}
2274
\logpage{[ 8, 6, 1 ]}
2275
\hyperdef{L}{X7A7080E77E93A36F}{}
2276
{
2277
2278
\begin{Verbatim}[commandchars=!@J,fontsize=\small,frame=single,label=Example]
2279
!gapprompt@gap>J !gapinput@H7 := Fan( [[0,1],[1,0],[0,-1],[-1,7]],[[1,2],[2,3],[3,4],[4,1]] );J
2280
<A fan in |R^2>
2281
!gapprompt@gap>J !gapinput@H7 := ToricVariety( H7 );J
2282
<A toric variety of dimension 2>
2283
!gapprompt@gap>J !gapinput@P := TorusInvariantPrimeDivisors( H7 );J
2284
[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,
2285
<A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>,
2286
<A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,
2287
<A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]
2288
!gapprompt@gap>J !gapinput@D := P[3]+P[4];J
2289
<A divisor of a toric variety with coordinates [ 0, 0, 1, 1 ]>
2290
!gapprompt@gap>J !gapinput@IsBasepointFree(D);J
2291
true
2292
!gapprompt@gap>J !gapinput@IsAmple(D);J
2293
true
2294
!gapprompt@gap>J !gapinput@CoordinateRingOfTorus(H7,"x");J
2295
Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )
2296
!gapprompt@gap>J !gapinput@Polytope(D);J
2297
<A polytope in |R^2>
2298
!gapprompt@gap>J !gapinput@CharactersForClosedEmbedding(D);J
2299
[ |[ 1 ]|, |[ x2 ]|, |[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|,
2300
|[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|,
2301
|[ x1^6*x2 ]|, |[ x1^7*x2 ]|, |[ x1^8*x2 ]| ]
2302
!gapprompt@gap>J !gapinput@CoxRingOfTargetOfDivisorMorphism(D);J
2303
Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]
2304
(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
2305
!gapprompt@gap>J !gapinput@RingMorphismOfDivisor(D);J
2306
<A "homomorphism" of rings>
2307
!gapprompt@gap>J !gapinput@Display(last);J
2308
Q[x_1,x_2,x_3,x_4]
2309
(weights: [ [ 0, 0, 1, -7 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ])
2310
^
2311
|
2312
[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,
2313
x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3,
2314
x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]
2315
|
2316
|
2317
Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]
2318
(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
2319
!gapprompt@gap>J !gapinput@ByASmallerPresentation(ClassGroup(H7));J
2320
<A free left module of rank 2 on free generators>
2321
!gapprompt@gap>J !gapinput@Display(RingMorphismOfDivisor(D));J
2322
Q[x_1,x_2,x_3,x_4]
2323
(weights: [ [ 1, -7 ], [ 0, 1 ], [ 1, 0 ], [ 0, 1 ] ])
2324
^
2325
|
2326
[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,
2327
x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3,
2328
x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]
2329
|
2330
|
2331
Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]
2332
(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
2333
!gapprompt@gap>J !gapinput@MonomsOfCoxRingOfDegree(D);J
2334
[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,
2335
x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3,
2336
x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]
2337
!gapprompt@gap>J !gapinput@D2:=D-2*P[2];J
2338
<A divisor of a toric variety with coordinates [ 0, -2, 1, 1 ]>
2339
!gapprompt@gap>J !gapinput@IsBasepointFree(D2);J
2340
false
2341
!gapprompt@gap>J !gapinput@IsAmple(D2);J
2342
false
2343
\end{Verbatim}
2344
}
2345
2346
}
2347
2348
}
2349
2350
\def\indexname{Index\logpage{[ "Ind", 0, 0 ]}
2351
\hyperdef{L}{X83A0356F839C696F}{}
2352
}
2353
2354
\cleardoublepage
2355
\phantomsection
2356
\addcontentsline{toc}{chapter}{Index}
2357
2358
2359
\printindex
2360
2361
\newpage
2362
\immediate\write\pagenrlog{["End"], \arabic{page}];}
2363
\immediate\closeout\pagenrlog
2364
\end{document}
2365
2366