Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X4 [33X[0;0YToric subvarieties[133X[101X234[1X4.1 [33X[0;0YToric subvarieties: Category and Representations[133X[101X56[1X4.1-1 IsToricSubvariety[101X78[29X[2XIsToricSubvariety[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of a toric subvariety. Every toric subvariety is a toric12variety, so every method applicable to toric varieties is also applicable to13toric subvarieties.[133X141516[1X4.2 [33X[0;0YToric subvarieties: Properties[133X[101X1718[1X4.2-1 IsClosed[101X1920[29X[2XIsClosed[102X( [3Xvari[103X ) [32X property21[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2223[33X[0;0YChecks if the subvariety [3Xvari[103X is a closed subset of its ambient variety.[133X2425[1X4.2-2 IsOpen[101X2627[29X[2XIsOpen[102X( [3Xvari[103X ) [32X property28[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2930[33X[0;0YChecks if a subvariety is a closed subset.[133X3132[1X4.2-3 IsWholeVariety[101X3334[29X[2XIsWholeVariety[102X( [3Xvari[103X ) [32X property35[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3637[33X[0;0YReturns true if the subvariety [3Xvari[103X is the whole variety.[133X383940[1X4.3 [33X[0;0YToric subvarieties: Attributes[133X[101X4142[1X4.3-1 UnderlyingToricVariety[101X4344[29X[2XUnderlyingToricVariety[102X( [3Xvari[103X ) [32X attribute45[6XReturns:[106X [33X[0;10Ya variety[133X4647[33X[0;0YReturns the toric variety which is represented by [3Xvari[103X. This method48implements the forgetful functor subvarieties -> varieties.[133X4950[1X4.3-2 InclusionMorphism[101X5152[29X[2XInclusionMorphism[102X( [3Xvari[103X ) [32X attribute53[6XReturns:[106X [33X[0;10Ya morphism[133X5455[33X[0;0YIf the variety [3Xvari[103X is an open subvariety, this method returns the inclusion56morphism in its ambient variety. If not, it will fail.[133X5758[1X4.3-3 AmbientToricVariety[101X5960[29X[2XAmbientToricVariety[102X( [3Xvari[103X ) [32X attribute61[6XReturns:[106X [33X[0;10Ya variety[133X6263[33X[0;0YReturns the ambient toric variety of the subvariety [3Xvari[103X[133X646566[1X4.4 [33X[0;0YToric subvarieties: Methods[133X[101X6768[1X4.4-1 ClosureOfTorusOrbitOfCone[101X6970[29X[2XClosureOfTorusOrbitOfCone[102X( [3Xvari[103X, [3Xcone[103X ) [32X operation71[6XReturns:[106X [33X[0;10Ya subvariety[133X7273[33X[0;0YThe method returns the closure of the orbit of the torus contained in [3Xvari[103X74which corresponds to the cone [3Xcone[103X as a closed subvariety of [3Xvari[103X.[133X757677[1X4.5 [33X[0;0YToric subvarieties: Constructors[133X[101X7879[1X4.5-1 ToricSubvariety[101X8081[29X[2XToricSubvariety[102X( [3Xvari[103X, [3Xambvari[103X ) [32X operation82[6XReturns:[106X [33X[0;10Ya subvariety[133X8384[33X[0;0YThe method returns the closure of the orbit of the torus contained in [3Xvari[103X85which corresponds to the cone [3Xcone[103X as a closed subvariety of [3Xvari[103X.[133X86878889