Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X7 [33X[0;0YToric morphisms[133X[101X234[1X7.1 [33X[0;0YToric morphisms: Category and Representations[133X[101X56[1X7.1-1 IsToricMorphism[101X78[29X[2XIsToricMorphism[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of toric morphisms. A toric morphism is defined by a grid12homomorphism, which is compatible with the fan structure of the two13varieties.[133X141516[1X7.2 [33X[0;0YToric morphisms: Properties[133X[101X1718[1X7.2-1 IsMorphism[101X1920[29X[2XIsMorphism[102X( [3Xmorph[103X ) [32X property21[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2223[33X[0;0YChecks if the grid morphism [3Xmorph[103X respects the fan structure.[133X2425[1X7.2-2 IsProper[101X2627[29X[2XIsProper[102X( [3Xmorph[103X ) [32X property28[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2930[33X[0;0YChecks if the defined morphism [3Xmorph[103X is proper.[133X313233[1X7.3 [33X[0;0YToric morphisms: Attributes[133X[101X3435[1X7.3-1 SourceObject[101X3637[29X[2XSourceObject[102X( [3Xmorph[103X ) [32X attribute38[6XReturns:[106X [33X[0;10Ya variety[133X3940[33X[0;0YReturns the source object of the morphism [3Xmorph[103X. This attribute is a must41have.[133X4243[1X7.3-2 UnderlyingGridMorphism[101X4445[29X[2XUnderlyingGridMorphism[102X( [3Xmorph[103X ) [32X attribute46[6XReturns:[106X [33X[0;10Ya map[133X4748[33X[0;0YReturns the grid map which defines [3Xmorph[103X.[133X4950[1X7.3-3 ToricImageObject[101X5152[29X[2XToricImageObject[102X( [3Xmorph[103X ) [32X attribute53[6XReturns:[106X [33X[0;10Ya variety[133X5455[33X[0;0YReturns the variety which is created by the fan which is the image of the56fan of the source of [3Xmorph[103X. This is not an image in the usual sense, but a57toric image.[133X5859[1X7.3-4 RangeObject[101X6061[29X[2XRangeObject[102X( [3Xmorph[103X ) [32X attribute62[6XReturns:[106X [33X[0;10Ya variety[133X6364[33X[0;0YReturns the range of the morphism [3Xmorph[103X. If no range is given (yes, this is65possible), the method returns the image.[133X6667[1X7.3-5 MorphismOnWeilDivisorGroup[101X6869[29X[2XMorphismOnWeilDivisorGroup[102X( [3Xmorph[103X ) [32X attribute70[6XReturns:[106X [33X[0;10Ya morphism[133X7172[33X[0;0YReturns the associated morphism between the divisor group of the range of73[3Xmorph[103X and the divisor group of the source.[133X7475[1X7.3-6 ClassGroup[101X7677[29X[2XClassGroup[102X( [3Xmorph[103X ) [32X attribute78[6XReturns:[106X [33X[0;10Ya morphism[133X7980[33X[0;0YReturns the associated morphism between the class groups of source and range81of the morphism [3Xmorph[103X[133X8283[1X7.3-7 MorphismOnCartierDivisorGroup[101X8485[29X[2XMorphismOnCartierDivisorGroup[102X( [3Xmorph[103X ) [32X attribute86[6XReturns:[106X [33X[0;10Ya morphism[133X8788[33X[0;0YReturns the associated morphism between the Cartier divisor groups of source89and range of the morphism [3Xmorph[103X[133X9091[1X7.3-8 PicardGroup[101X9293[29X[2XPicardGroup[102X( [3Xmorph[103X ) [32X attribute94[6XReturns:[106X [33X[0;10Ya morphism[133X9596[33X[0;0YReturns the associated morphism between the class groups of source and range97of the morphism [3Xmorph[103X[133X9899100[1X7.4 [33X[0;0YToric morphisms: Methods[133X[101X101102[1X7.4-1 UnderlyingListList[101X103104[29X[2XUnderlyingListList[102X( [3Xmorph[103X ) [32X attribute105[6XReturns:[106X [33X[0;10Ya list[133X106107[33X[0;0YReturns a list of list which represents the grid homomorphism.[133X108109110[1X7.5 [33X[0;0YToric morphisms: Constructors[133X[101X111112[1X7.5-1 ToricMorphism[101X113114[29X[2XToricMorphism[102X( [3Xvari[103X, [3Xlis[103X ) [32X operation115[6XReturns:[106X [33X[0;10Ya morphism[133X116117[33X[0;0YReturns the toric morphism with source [3Xvari[103X which is represented by the118matrix [3Xlis[103X. The range is set to the image.[133X119120[1X7.5-2 ToricMorphism[101X121122[29X[2XToricMorphism[102X( [3Xvari[103X, [3Xlis[103X, [3Xvari2[103X ) [32X operation123[6XReturns:[106X [33X[0;10Ya morphism[133X124125[33X[0;0YReturns the toric morphism with source [3Xvari[103X and range [3Xvari2[103X which is126represented by the matrix [3Xlis[103X.[133X127128129[1X7.6 [33X[0;0YToric morphisms: Examples[133X[101X130131132[1X7.6-1 [33X[0;0YMorphism between toric varieties and their class groups[133X[101X133134[4X[32X Example [32X[104X135[4X[25Xgap>[125X [27XP1 := Polytope([[0],[1]]);[127X[104X136[4X[28X<A polytope in |R^1>[128X[104X137[4X[25Xgap>[125X [27XP2 := Polytope([[0,0],[0,1],[1,0]]);[127X[104X138[4X[28X<A polytope in |R^2>[128X[104X139[4X[25Xgap>[125X [27XP1 := ToricVariety( P1 );[127X[104X140[4X[28X<A projective toric variety of dimension 1>[128X[104X141[4X[25Xgap>[125X [27XP2 := ToricVariety( P2 );[127X[104X142[4X[28X<A projective toric variety of dimension 2>[128X[104X143[4X[25Xgap>[125X [27XP1P2 := P1*P2;[127X[104X144[4X[28X<A projective toric variety of dimension 3[128X[104X145[4X[28X which is a product of 2 toric varieties>[128X[104X146[4X[25Xgap>[125X [27XClassGroup( P1 );[127X[104X147[4X[28X<A non-torsion left module presented by 1 relation for 2 generators>[128X[104X148[4X[25Xgap>[125X [27XDisplay(ByASmallerPresentation(last));[127X[104X149[4X[28XZ^(1 x 1)[128X[104X150[4X[25Xgap>[125X [27XClassGroup( P2 );[127X[104X151[4X[28X<A non-torsion left module presented by 2 relations for 3 generators>[128X[104X152[4X[25Xgap>[125X [27XDisplay(ByASmallerPresentation(last));[127X[104X153[4X[28XZ^(1 x 1)[128X[104X154[4X[25Xgap>[125X [27XClassGroup( P1P2 );[127X[104X155[4X[28X<A free left module of rank 2 on free generators>[128X[104X156[4X[25Xgap>[125X [27XDisplay( last );[127X[104X157[4X[28XZ^(1 x 2)[128X[104X158[4X[25Xgap>[125X [27XPicardGroup( P1P2 );[127X[104X159[4X[28X<A free left module of rank 2 on free generators>[128X[104X160[4X[25Xgap>[125X [27XP1P2;[127X[104X161[4X[28X<A projective smooth toric variety of dimension 3 [128X[104X162[4X[28X which is a product of 2 toric varieties>[128X[104X163[4X[25Xgap>[125X [27XP2P1:=P2*P1;[127X[104X164[4X[28X<A projective toric variety of dimension 3 [128X[104X165[4X[28X which is a product of 2 toric varieties>[128X[104X166[4X[25Xgap>[125X [27XM := [[0,0,1],[1,0,0],[0,1,0]];[127X[104X167[4X[28X[ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ][128X[104X168[4X[25Xgap>[125X [27XM := ToricMorphism(P1P2,M,P2P1);[127X[104X169[4X[28X<A "homomorphism" of right objects>[128X[104X170[4X[25Xgap>[125X [27XIsMorphism(M);[127X[104X171[4X[28Xtrue[128X[104X172[4X[25Xgap>[125X [27XClassGroup(M);[127X[104X173[4X[28X<A homomorphism of left modules>[128X[104X174[4X[25Xgap>[125X [27XDisplay(last);[127X[104X175[4X[28X[ [ 0, 1 ],[128X[104X176[4X[28X [ 1, 0 ] ][128X[104X177[4X[28X[128X[104X178[4X[28Xthe map is currently represented by the above 2 x 2 matrix[128X[104X179[4X[25Xgap>[125X [27XByASmallerPresentation(ClassGroup(M));[127X[104X180[4X[28X<A non-zero homomorphism of left modules>[128X[104X181[4X[25Xgap>[125X [27XDisplay(last);[127X[104X182[4X[28X[ [ 0, 1 ],[128X[104X183[4X[28X [ 1, 0 ] ][128X[104X184[4X[28X[128X[104X185[4X[28Xthe map is currently represented by the above 2 x 2 matrix[128X[104X186[4X[32X[104X187188189190