CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
7 Toric morphisms
3
4
5
7.1 Toric morphisms: Category and Representations
6
7
7.1-1 IsToricMorphism
8
9
IsToricMorphism( M )  Category
10
Returns: true or false
11
12
The GAP category of toric morphisms. A toric morphism is defined by a grid
13
homomorphism, which is compatible with the fan structure of the two
14
varieties.
15
16
17
7.2 Toric morphisms: Properties
18
19
7.2-1 IsMorphism
20
21
IsMorphism( morph )  property
22
Returns: true or false
23
24
Checks if the grid morphism morph respects the fan structure.
25
26
7.2-2 IsProper
27
28
IsProper( morph )  property
29
Returns: true or false
30
31
Checks if the defined morphism morph is proper.
32
33
34
7.3 Toric morphisms: Attributes
35
36
7.3-1 SourceObject
37
38
SourceObject( morph )  attribute
39
Returns: a variety
40
41
Returns the source object of the morphism morph. This attribute is a must
42
have.
43
44
7.3-2 UnderlyingGridMorphism
45
46
UnderlyingGridMorphism( morph )  attribute
47
Returns: a map
48
49
Returns the grid map which defines morph.
50
51
7.3-3 ToricImageObject
52
53
ToricImageObject( morph )  attribute
54
Returns: a variety
55
56
Returns the variety which is created by the fan which is the image of the
57
fan of the source of morph. This is not an image in the usual sense, but a
58
toric image.
59
60
7.3-4 RangeObject
61
62
RangeObject( morph )  attribute
63
Returns: a variety
64
65
Returns the range of the morphism morph. If no range is given (yes, this is
66
possible), the method returns the image.
67
68
7.3-5 MorphismOnWeilDivisorGroup
69
70
MorphismOnWeilDivisorGroup( morph )  attribute
71
Returns: a morphism
72
73
Returns the associated morphism between the divisor group of the range of
74
morph and the divisor group of the source.
75
76
7.3-6 ClassGroup
77
78
ClassGroup( morph )  attribute
79
Returns: a morphism
80
81
Returns the associated morphism between the class groups of source and range
82
of the morphism morph
83
84
7.3-7 MorphismOnCartierDivisorGroup
85
86
MorphismOnCartierDivisorGroup( morph )  attribute
87
Returns: a morphism
88
89
Returns the associated morphism between the Cartier divisor groups of source
90
and range of the morphism morph
91
92
7.3-8 PicardGroup
93
94
PicardGroup( morph )  attribute
95
Returns: a morphism
96
97
Returns the associated morphism between the class groups of source and range
98
of the morphism morph
99
100
101
7.4 Toric morphisms: Methods
102
103
7.4-1 UnderlyingListList
104
105
UnderlyingListList( morph )  attribute
106
Returns: a list
107
108
Returns a list of list which represents the grid homomorphism.
109
110
111
7.5 Toric morphisms: Constructors
112
113
7.5-1 ToricMorphism
114
115
ToricMorphism( vari, lis )  operation
116
Returns: a morphism
117
118
Returns the toric morphism with source vari which is represented by the
119
matrix lis. The range is set to the image.
120
121
7.5-2 ToricMorphism
122
123
ToricMorphism( vari, lis, vari2 )  operation
124
Returns: a morphism
125
126
Returns the toric morphism with source vari and range vari2 which is
127
represented by the matrix lis.
128
129
130
7.6 Toric morphisms: Examples
131
132
133
7.6-1 Morphism between toric varieties and their class groups
134
135
 Example 
136
gap> P1 := Polytope([[0],[1]]);
137
<A polytope in |R^1>
138
gap> P2 := Polytope([[0,0],[0,1],[1,0]]);
139
<A polytope in |R^2>
140
gap> P1 := ToricVariety( P1 );
141
<A projective toric variety of dimension 1>
142
gap> P2 := ToricVariety( P2 );
143
<A projective toric variety of dimension 2>
144
gap> P1P2 := P1*P2;
145
<A projective toric variety of dimension 3
146
 which is a product of 2 toric varieties>
147
gap> ClassGroup( P1 );
148
<A non-torsion left module presented by 1 relation for 2 generators>
149
gap> Display(ByASmallerPresentation(last));
150
Z^(1 x 1)
151
gap> ClassGroup( P2 );
152
<A non-torsion left module presented by 2 relations for 3 generators>
153
gap> Display(ByASmallerPresentation(last));
154
Z^(1 x 1)
155
gap> ClassGroup( P1P2 );
156
<A free left module of rank 2 on free generators>
157
gap> Display( last );
158
Z^(1 x 2)
159
gap> PicardGroup( P1P2 );
160
<A free left module of rank 2 on free generators>
161
gap> P1P2;
162
<A projective smooth toric variety of dimension 3 
163
 which is a product of 2 toric varieties>
164
gap> P2P1:=P2*P1;
165
<A projective toric variety of dimension 3 
166
 which is a product of 2 toric varieties>
167
gap> M := [[0,0,1],[1,0,0],[0,1,0]];
168
[ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ]
169
gap> M := ToricMorphism(P1P2,M,P2P1);
170
<A "homomorphism" of right objects>
171
gap> IsMorphism(M);
172
true
173
gap> ClassGroup(M);
174
<A homomorphism of left modules>
175
gap> Display(last);
176
[ [ 0, 1 ],
177
 [ 1, 0 ] ]
178

179
the map is currently represented by the above 2 x 2 matrix
180
gap> ByASmallerPresentation(ClassGroup(M));
181
<A non-zero homomorphism of left modules>
182
gap> Display(last);
183
[ [ 0, 1 ],
184
 [ 1, 0 ] ]
185

186
the map is currently represented by the above 2 x 2 matrix
187

188
189
190