Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X8 [33X[0;0YToric divisors[133X[101X234[1X8.1 [33X[0;0YToric divisors: Category and Representations[133X[101X56[1X8.1-1 IsToricDivisor[101X78[29X[2XIsToricDivisor[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of torus invariant Weil divisors.[133X121314[1X8.2 [33X[0;0YToric divisors: Properties[133X[101X1516[1X8.2-1 IsCartier[101X1718[29X[2XIsCartier[102X( [3Xdivi[103X ) [32X property19[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2021[33X[0;0YChecks if the torus invariant Weil divisor [3Xdivi[103X is Cartier i.e. if it is22locally principal.[133X2324[1X8.2-2 IsPrincipal[101X2526[29X[2XIsPrincipal[102X( [3Xdivi[103X ) [32X property27[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2829[33X[0;0YChecks if the torus invariant Weil divisor [3Xdivi[103X is principal which in the30toric invariant case means that it is the divisor of a character.[133X3132[1X8.2-3 IsPrimedivisor[101X3334[29X[2XIsPrimedivisor[102X( [3Xdivi[103X ) [32X property35[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3637[33X[0;0YChecks if the Weil divisor [3Xdivi[103X represents a prime divisor, i.e. if it is a38standard generator of the divisor group.[133X3940[1X8.2-4 IsBasepointFree[101X4142[29X[2XIsBasepointFree[102X( [3Xdivi[103X ) [32X property43[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4445[33X[0;0YChecks if the divisor [3Xdivi[103X is basepoint free. What else?[133X4647[1X8.2-5 IsAmple[101X4849[29X[2XIsAmple[102X( [3Xdivi[103X ) [32X property50[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X5152[33X[0;0YChecks if the divisor [3Xdivi[103X is ample, i.e. if it is colored red, yellow and53green.[133X5455[1X8.2-6 IsVeryAmple[101X5657[29X[2XIsVeryAmple[102X( [3Xdivi[103X ) [32X property58[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X5960[33X[0;0YChecks if the divisor [3Xdivi[103X is very ample.[133X616263[1X8.3 [33X[0;0YToric divisors: Attributes[133X[101X6465[1X8.3-1 CartierData[101X6667[29X[2XCartierData[102X( [3Xdivi[103X ) [32X attribute68[6XReturns:[106X [33X[0;10Ya list[133X6970[33X[0;0YReturns the Cartier data of the divisor [3Xdivi[103X, if it is Cartier, and fails71otherwise.[133X7273[1X8.3-2 CharacterOfPrincipalDivisor[101X7475[29X[2XCharacterOfPrincipalDivisor[102X( [3Xdivi[103X ) [32X attribute76[6XReturns:[106X [33X[0;10Yan element[133X7778[33X[0;0YReturns the character corresponding to principal divisor [3Xdivi[103X.[133X7980[1X8.3-3 ToricVarietyOfDivisor[101X8182[29X[2XToricVarietyOfDivisor[102X( [3Xdivi[103X ) [32X attribute83[6XReturns:[106X [33X[0;10Ya variety[133X8485[33X[0;0YReturns the closure of the torus orbit corresponding to the prime divisor86[3Xdivi[103X. Not implemented for other divisors. Maybe we should add the support87here. Is this even a toric variety? Exercise left to the reader.[133X8889[1X8.3-4 ClassOfDivisor[101X9091[29X[2XClassOfDivisor[102X( [3Xdivi[103X ) [32X attribute92[6XReturns:[106X [33X[0;10Yan element[133X9394[33X[0;0YReturns the class group element corresponding to the divisor [3Xdivi[103X.[133X9596[1X8.3-5 PolytopeOfDivisor[101X9798[29X[2XPolytopeOfDivisor[102X( [3Xdivi[103X ) [32X attribute99[6XReturns:[106X [33X[0;10Ya polytope[133X100101[33X[0;0YReturns the polytope corresponding to the divisor [3Xdivi[103X.[133X102103[1X8.3-6 BasisOfGlobalSections[101X104105[29X[2XBasisOfGlobalSections[102X( [3Xdivi[103X ) [32X attribute106[6XReturns:[106X [33X[0;10Ya list[133X107108[33X[0;0YReturns a basis of the global section module of the quasi-coherent sheaf of109the divisor [3Xdivi[103X.[133X110111[1X8.3-7 IntegerForWhichIsSureVeryAmple[101X112113[29X[2XIntegerForWhichIsSureVeryAmple[102X( [3Xdivi[103X ) [32X attribute114[6XReturns:[106X [33X[0;10Yan integer[133X115116[33X[0;0YReturns an integer which, to be multiplied with the ample divisor [3Xdivi[103X,117someone gets a very ample divisor.[133X118119[1X8.3-8 AmbientToricVariety[101X120121[29X[2XAmbientToricVariety[102X( [3Xdivi[103X ) [32X attribute122[6XReturns:[106X [33X[0;10Ya variety[133X123124[33X[0;0YReturns the containing variety of the prime divisors of the divisor [3Xdivi[103X.[133X125126[1X8.3-9 UnderlyingGroupElement[101X127128[29X[2XUnderlyingGroupElement[102X( [3Xdivi[103X ) [32X attribute129[6XReturns:[106X [33X[0;10Yan element[133X130131[33X[0;0YReturns an element which represents the divisor [3Xdivi[103X in the Weil group.[133X132133[1X8.3-10 UnderlyingToricVariety[101X134135[29X[2XUnderlyingToricVariety[102X( [3Xdivi[103X ) [32X attribute136[6XReturns:[106X [33X[0;10Ya variety[133X137138[33X[0;0YReturns the closure of the torus orbit corresponding to the prime divisor139[3Xdivi[103X. Not implemented for other divisors. Maybe we should add the support140here. Is this even a toric variety? Exercise left to the reader.[133X141142[1X8.3-11 DegreeOfDivisor[101X143144[29X[2XDegreeOfDivisor[102X( [3Xdivi[103X ) [32X attribute145[6XReturns:[106X [33X[0;10Yan integer[133X146147[33X[0;0YReturns the degree of the divisor [3Xdivi[103X.[133X148149[1X8.3-12 MonomsOfCoxRingOfDegree[101X150151[29X[2XMonomsOfCoxRingOfDegree[102X( [3Xdivi[103X ) [32X attribute152[6XReturns:[106X [33X[0;10Ya list[133X153154[33X[0;0YReturns the variety corresponding to the polytope of the divisor [3Xdivi[103X.[133X155156[1X8.3-13 CoxRingOfTargetOfDivisorMorphism[101X157158[29X[2XCoxRingOfTargetOfDivisorMorphism[102X( [3Xdivi[103X ) [32X attribute159[6XReturns:[106X [33X[0;10Ya ring[133X160161[33X[0;0YA basepoint free divisor [3Xdivi[103X defines a map from its ambient variety in a162projective space. This method returns the cox ring of such a projective163space.[133X164165[1X8.3-14 RingMorphismOfDivisor[101X166167[29X[2XRingMorphismOfDivisor[102X( [3Xdivi[103X ) [32X attribute168[6XReturns:[106X [33X[0;10Ya ring[133X169170[33X[0;0YA basepoint free divisor [3Xdivi[103X defines a map from its ambient variety in a171projective space. This method returns the morphism between the cox ring of172this projective space to the cox ring of the ambient variety of [3Xdivi[103X.[133X173174175[1X8.4 [33X[0;0YToric divisors: Methods[133X[101X176177[1X8.4-1 VeryAmpleMultiple[101X178179[29X[2XVeryAmpleMultiple[102X( [3Xdivi[103X ) [32X operation180[6XReturns:[106X [33X[0;10Ya divisor[133X181182[33X[0;0YReturns a very ample multiple of the ample divisor [3Xdivi[103X. Will fail if183divisor is not ample.[133X184185[1X8.4-2 CharactersForClosedEmbedding[101X186187[29X[2XCharactersForClosedEmbedding[102X( [3Xdivi[103X ) [32X operation188[6XReturns:[106X [33X[0;10Ya list[133X189190[33X[0;0YReturns characters for closed embedding defined via the ample divisor [3Xdivi[103X.191Fails if divisor is not ample.[133X192193[1X8.4-3 MonomsOfCoxRingOfDegree[101X194195[29X[2XMonomsOfCoxRingOfDegree[102X( [3Xvari[103X, [3Xelem[103X ) [32X operation196[6XReturns:[106X [33X[0;10Ya list[133X197198[33X[0;0YReturns the monoms of the Cox ring of the variety [3Xvari[103X with degree to the199class group element [3Xelem[103X. The variable [3Xelem[103X can also be a list.[133X200201[1X8.4-4 DivisorOfGivenClass[101X202203[29X[2XDivisorOfGivenClass[102X( [3Xvari[103X, [3Xelem[103X ) [32X operation204[6XReturns:[106X [33X[0;10Ya list[133X205206[33X[0;0YComputes a divisor of the variety [3Xdivi[103X which is member of the divisor class207presented by [3Xelem[103X. The variable [3Xelem[103X can be a homalg element or a list208presenting an element.[133X209210[1X8.4-5 AddDivisorToItsAmbientVariety[101X211212[29X[2XAddDivisorToItsAmbientVariety[102X( [3Xdivi[103X ) [32X operation213214[33X[0;0YAdds the divisor [3Xdivi[103X to the Weil divisor list of its ambient variety.[133X215216[1X8.4-6 Polytope[101X217218[29X[2XPolytope[102X( [3Xdivi[103X ) [32X operation219[6XReturns:[106X [33X[0;10Ya polytope[133X220221[33X[0;0YReturns the polytope of the divisor [3Xdivi[103X. Another name for PolytopeOfDivisor222for compatibility and shortness.[133X223224[1X8.4-7 +[101X225226[29X[2X+[102X( [3Xdivi1[103X, [3Xdivi2[103X ) [32X operation227[6XReturns:[106X [33X[0;10Ya divisor[133X228229[33X[0;0YReturns the sum of the divisors [3Xdivi1[103X and [3Xdivi2[103X.[133X230231[1X8.4-8 -[101X232233[29X[2X-[102X( [3Xdivi1[103X, [3Xdivi2[103X ) [32X operation234[6XReturns:[106X [33X[0;10Ya divisor[133X235236[33X[0;0YReturns the divisor [3Xdivi1[103X minus [3Xdivi2[103X.[133X237238[1X8.4-9 *[101X239240[29X[2X*[102X( [3Xk[103X, [3Xdivi[103X ) [32X operation241[6XReturns:[106X [33X[0;10Ya divisor[133X242243[33X[0;0YReturns [3Xk[103X times the divisor [3Xdivi[103X.[133X244245246[1X8.5 [33X[0;0YToric divisors: Constructors[133X[101X247248[1X8.5-1 DivisorOfCharacter[101X249250[29X[2XDivisorOfCharacter[102X( [3Xelem[103X, [3Xvari[103X ) [32X operation251[6XReturns:[106X [33X[0;10Ya divisor[133X252253[33X[0;0YReturns the divisor of the toric variety [3Xvari[103X which corresponds to the254character [3Xelem[103X.[133X255256[1X8.5-2 DivisorOfCharacter[101X257258[29X[2XDivisorOfCharacter[102X( [3Xlis[103X, [3Xvari[103X ) [32X operation259[6XReturns:[106X [33X[0;10Ya divisor[133X260261[33X[0;0YReturns the divisor of the toric variety [3Xvari[103X which corresponds to the262character which is created by the list [3Xlis[103X.[133X263264[1X8.5-3 CreateDivisor[101X265266[29X[2XCreateDivisor[102X( [3Xelem[103X, [3Xvari[103X ) [32X operation267[6XReturns:[106X [33X[0;10Ya divisor[133X268269[33X[0;0YReturns the divisor of the toric variety [3Xvari[103X which corresponds to the Weil270group element [3Xelem[103X.[133X271272[1X8.5-4 CreateDivisor[101X273274[29X[2XCreateDivisor[102X( [3Xlis[103X, [3Xvari[103X ) [32X operation275[6XReturns:[106X [33X[0;10Ya divisor[133X276277[33X[0;0YReturns the divisor of the toric variety [3Xvari[103X which corresponds to the Weil278group element which is created by the list [3Xlis[103X.[133X279280281[1X8.6 [33X[0;0YToric divisors: Examples[133X[101X282283284[1X8.6-1 [33X[0;0YDivisors on a toric variety[133X[101X285286[4X[32X Example [32X[104X287[4X[25Xgap>[125X [27XH7 := Fan( [[0,1],[1,0],[0,-1],[-1,7]],[[1,2],[2,3],[3,4],[4,1]] );[127X[104X288[4X[28X<A fan in |R^2>[128X[104X289[4X[25Xgap>[125X [27XH7 := ToricVariety( H7 );[127X[104X290[4X[28X<A toric variety of dimension 2>[128X[104X291[4X[25Xgap>[125X [27XP := TorusInvariantPrimeDivisors( H7 );[127X[104X292[4X[28X[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>, [128X[104X293[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>, [128X[104X294[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>, [128X[104X295[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ][128X[104X296[4X[25Xgap>[125X [27XD := P[3]+P[4];[127X[104X297[4X[28X<A divisor of a toric variety with coordinates [ 0, 0, 1, 1 ]>[128X[104X298[4X[25Xgap>[125X [27XIsBasepointFree(D);[127X[104X299[4X[28Xtrue[128X[104X300[4X[25Xgap>[125X [27XIsAmple(D);[127X[104X301[4X[28Xtrue[128X[104X302[4X[25Xgap>[125X [27XCoordinateRingOfTorus(H7,"x");[127X[104X303[4X[28XQ[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )[128X[104X304[4X[25Xgap>[125X [27XPolytope(D);[127X[104X305[4X[28X<A polytope in |R^2>[128X[104X306[4X[25Xgap>[125X [27XCharactersForClosedEmbedding(D);[127X[104X307[4X[28X[ |[ 1 ]|, |[ x2 ]|, |[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|, [128X[104X308[4X[28X |[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|, [128X[104X309[4X[28X |[ x1^6*x2 ]|, |[ x1^7*x2 ]|, |[ x1^8*x2 ]| ][128X[104X310[4X[25Xgap>[125X [27XCoxRingOfTargetOfDivisorMorphism(D);[127X[104X311[4X[28XQ[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11][128X[104X312[4X[28X(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])[128X[104X313[4X[25Xgap>[125X [27XRingMorphismOfDivisor(D);[127X[104X314[4X[28X<A "homomorphism" of rings>[128X[104X315[4X[25Xgap>[125X [27XDisplay(last);[127X[104X316[4X[28XQ[x_1,x_2,x_3,x_4][128X[104X317[4X[28X(weights: [ [ 0, 0, 1, -7 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ])[128X[104X318[4X[28X ^[128X[104X319[4X[28X |[128X[104X320[4X[28X[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,[128X[104X321[4X[28X x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3, [128X[104X322[4X[28X x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ][128X[104X323[4X[28X |[128X[104X324[4X[28X |[128X[104X325[4X[28XQ[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11][128X[104X326[4X[28X(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])[128X[104X327[4X[25Xgap>[125X [27XByASmallerPresentation(ClassGroup(H7));[127X[104X328[4X[28X<A free left module of rank 2 on free generators>[128X[104X329[4X[25Xgap>[125X [27XDisplay(RingMorphismOfDivisor(D));[127X[104X330[4X[28XQ[x_1,x_2,x_3,x_4][128X[104X331[4X[28X(weights: [ [ 1, -7 ], [ 0, 1 ], [ 1, 0 ], [ 0, 1 ] ])[128X[104X332[4X[28X ^[128X[104X333[4X[28X |[128X[104X334[4X[28X[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6, [128X[104X335[4X[28X x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3, [128X[104X336[4X[28X x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ][128X[104X337[4X[28X |[128X[104X338[4X[28X |[128X[104X339[4X[28XQ[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11][128X[104X340[4X[28X(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])[128X[104X341[4X[25Xgap>[125X [27XMonomsOfCoxRingOfDegree(D);[127X[104X342[4X[28X[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6, [128X[104X343[4X[28X x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3, [128X[104X344[4X[28X x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ][128X[104X345[4X[25Xgap>[125X [27XD2:=D-2*P[2];[127X[104X346[4X[28X<A divisor of a toric variety with coordinates [ 0, -2, 1, 1 ]>[128X[104X347[4X[25Xgap>[125X [27XIsBasepointFree(D2);[127X[104X348[4X[28Xfalse[128X[104X349[4X[25Xgap>[125X [27XIsAmple(D2);[127X[104X350[4X[28Xfalse[128X[104X351[4X[32X[104X352353354355