CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
8 Toric divisors
3
4
5
8.1 Toric divisors: Category and Representations
6
7
8.1-1 IsToricDivisor
8
9
IsToricDivisor( M )  Category
10
Returns: true or false
11
12
The GAP category of torus invariant Weil divisors.
13
14
15
8.2 Toric divisors: Properties
16
17
8.2-1 IsCartier
18
19
IsCartier( divi )  property
20
Returns: true or false
21
22
Checks if the torus invariant Weil divisor divi is Cartier i.e. if it is
23
locally principal.
24
25
8.2-2 IsPrincipal
26
27
IsPrincipal( divi )  property
28
Returns: true or false
29
30
Checks if the torus invariant Weil divisor divi is principal which in the
31
toric invariant case means that it is the divisor of a character.
32
33
8.2-3 IsPrimedivisor
34
35
IsPrimedivisor( divi )  property
36
Returns: true or false
37
38
Checks if the Weil divisor divi represents a prime divisor, i.e. if it is a
39
standard generator of the divisor group.
40
41
8.2-4 IsBasepointFree
42
43
IsBasepointFree( divi )  property
44
Returns: true or false
45
46
Checks if the divisor divi is basepoint free. What else?
47
48
8.2-5 IsAmple
49
50
IsAmple( divi )  property
51
Returns: true or false
52
53
Checks if the divisor divi is ample, i.e. if it is colored red, yellow and
54
green.
55
56
8.2-6 IsVeryAmple
57
58
IsVeryAmple( divi )  property
59
Returns: true or false
60
61
Checks if the divisor divi is very ample.
62
63
64
8.3 Toric divisors: Attributes
65
66
8.3-1 CartierData
67
68
CartierData( divi )  attribute
69
Returns: a list
70
71
Returns the Cartier data of the divisor divi, if it is Cartier, and fails
72
otherwise.
73
74
8.3-2 CharacterOfPrincipalDivisor
75
76
CharacterOfPrincipalDivisor( divi )  attribute
77
Returns: an element
78
79
Returns the character corresponding to principal divisor divi.
80
81
8.3-3 ToricVarietyOfDivisor
82
83
ToricVarietyOfDivisor( divi )  attribute
84
Returns: a variety
85
86
Returns the closure of the torus orbit corresponding to the prime divisor
87
divi. Not implemented for other divisors. Maybe we should add the support
88
here. Is this even a toric variety? Exercise left to the reader.
89
90
8.3-4 ClassOfDivisor
91
92
ClassOfDivisor( divi )  attribute
93
Returns: an element
94
95
Returns the class group element corresponding to the divisor divi.
96
97
8.3-5 PolytopeOfDivisor
98
99
PolytopeOfDivisor( divi )  attribute
100
Returns: a polytope
101
102
Returns the polytope corresponding to the divisor divi.
103
104
8.3-6 BasisOfGlobalSections
105
106
BasisOfGlobalSections( divi )  attribute
107
Returns: a list
108
109
Returns a basis of the global section module of the quasi-coherent sheaf of
110
the divisor divi.
111
112
8.3-7 IntegerForWhichIsSureVeryAmple
113
114
IntegerForWhichIsSureVeryAmple( divi )  attribute
115
Returns: an integer
116
117
Returns an integer which, to be multiplied with the ample divisor divi,
118
someone gets a very ample divisor.
119
120
8.3-8 AmbientToricVariety
121
122
AmbientToricVariety( divi )  attribute
123
Returns: a variety
124
125
Returns the containing variety of the prime divisors of the divisor divi.
126
127
8.3-9 UnderlyingGroupElement
128
129
UnderlyingGroupElement( divi )  attribute
130
Returns: an element
131
132
Returns an element which represents the divisor divi in the Weil group.
133
134
8.3-10 UnderlyingToricVariety
135
136
UnderlyingToricVariety( divi )  attribute
137
Returns: a variety
138
139
Returns the closure of the torus orbit corresponding to the prime divisor
140
divi. Not implemented for other divisors. Maybe we should add the support
141
here. Is this even a toric variety? Exercise left to the reader.
142
143
8.3-11 DegreeOfDivisor
144
145
DegreeOfDivisor( divi )  attribute
146
Returns: an integer
147
148
Returns the degree of the divisor divi.
149
150
8.3-12 MonomsOfCoxRingOfDegree
151
152
MonomsOfCoxRingOfDegree( divi )  attribute
153
Returns: a list
154
155
Returns the variety corresponding to the polytope of the divisor divi.
156
157
8.3-13 CoxRingOfTargetOfDivisorMorphism
158
159
CoxRingOfTargetOfDivisorMorphism( divi )  attribute
160
Returns: a ring
161
162
A basepoint free divisor divi defines a map from its ambient variety in a
163
projective space. This method returns the cox ring of such a projective
164
space.
165
166
8.3-14 RingMorphismOfDivisor
167
168
RingMorphismOfDivisor( divi )  attribute
169
Returns: a ring
170
171
A basepoint free divisor divi defines a map from its ambient variety in a
172
projective space. This method returns the morphism between the cox ring of
173
this projective space to the cox ring of the ambient variety of divi.
174
175
176
8.4 Toric divisors: Methods
177
178
8.4-1 VeryAmpleMultiple
179
180
VeryAmpleMultiple( divi )  operation
181
Returns: a divisor
182
183
Returns a very ample multiple of the ample divisor divi. Will fail if
184
divisor is not ample.
185
186
8.4-2 CharactersForClosedEmbedding
187
188
CharactersForClosedEmbedding( divi )  operation
189
Returns: a list
190
191
Returns characters for closed embedding defined via the ample divisor divi.
192
Fails if divisor is not ample.
193
194
8.4-3 MonomsOfCoxRingOfDegree
195
196
MonomsOfCoxRingOfDegree( vari, elem )  operation
197
Returns: a list
198
199
Returns the monoms of the Cox ring of the variety vari with degree to the
200
class group element elem. The variable elem can also be a list.
201
202
8.4-4 DivisorOfGivenClass
203
204
DivisorOfGivenClass( vari, elem )  operation
205
Returns: a list
206
207
Computes a divisor of the variety divi which is member of the divisor class
208
presented by elem. The variable elem can be a homalg element or a list
209
presenting an element.
210
211
8.4-5 AddDivisorToItsAmbientVariety
212
213
AddDivisorToItsAmbientVariety( divi )  operation
214
215
Adds the divisor divi to the Weil divisor list of its ambient variety.
216
217
8.4-6 Polytope
218
219
Polytope( divi )  operation
220
Returns: a polytope
221
222
Returns the polytope of the divisor divi. Another name for PolytopeOfDivisor
223
for compatibility and shortness.
224
225
8.4-7 +
226
227
+( divi1, divi2 )  operation
228
Returns: a divisor
229
230
Returns the sum of the divisors divi1 and divi2.
231
232
8.4-8 -
233
234
-( divi1, divi2 )  operation
235
Returns: a divisor
236
237
Returns the divisor divi1 minus divi2.
238
239
8.4-9 *
240
241
*( k, divi )  operation
242
Returns: a divisor
243
244
Returns k times the divisor divi.
245
246
247
8.5 Toric divisors: Constructors
248
249
8.5-1 DivisorOfCharacter
250
251
DivisorOfCharacter( elem, vari )  operation
252
Returns: a divisor
253
254
Returns the divisor of the toric variety vari which corresponds to the
255
character elem.
256
257
8.5-2 DivisorOfCharacter
258
259
DivisorOfCharacter( lis, vari )  operation
260
Returns: a divisor
261
262
Returns the divisor of the toric variety vari which corresponds to the
263
character which is created by the list lis.
264
265
8.5-3 CreateDivisor
266
267
CreateDivisor( elem, vari )  operation
268
Returns: a divisor
269
270
Returns the divisor of the toric variety vari which corresponds to the Weil
271
group element elem.
272
273
8.5-4 CreateDivisor
274
275
CreateDivisor( lis, vari )  operation
276
Returns: a divisor
277
278
Returns the divisor of the toric variety vari which corresponds to the Weil
279
group element which is created by the list lis.
280
281
282
8.6 Toric divisors: Examples
283
284
285
8.6-1 Divisors on a toric variety
286
287
 Example 
288
gap> H7 := Fan( [[0,1],[1,0],[0,-1],[-1,7]],[[1,2],[2,3],[3,4],[4,1]] );
289
<A fan in |R^2>
290
gap> H7 := ToricVariety( H7 );
291
<A toric variety of dimension 2>
292
gap> P := TorusInvariantPrimeDivisors( H7 );
293
[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>, 
294
 <A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>, 
295
 <A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>, 
296
 <A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]
297
gap> D := P[3]+P[4];
298
<A divisor of a toric variety with coordinates [ 0, 0, 1, 1 ]>
299
gap> IsBasepointFree(D);
300
true
301
gap> IsAmple(D);
302
true
303
gap> CoordinateRingOfTorus(H7,"x");
304
Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )
305
gap> Polytope(D);
306
<A polytope in |R^2>
307
gap> CharactersForClosedEmbedding(D);
308
[ |[ 1 ]|, |[ x2 ]|, |[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|, 
309
 |[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|, 
310
 |[ x1^6*x2 ]|, |[ x1^7*x2 ]|, |[ x1^8*x2 ]| ]
311
gap> CoxRingOfTargetOfDivisorMorphism(D);
312
Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]
313
(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
314
gap> RingMorphismOfDivisor(D);
315
<A "homomorphism" of rings>
316
gap> Display(last);
317
Q[x_1,x_2,x_3,x_4]
318
(weights: [ [ 0, 0, 1, -7 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ])
319
 ^
320
 |
321
[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,
322
 x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3, 
323
 x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]
324
 |
325
 |
326
Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]
327
(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
328
gap> ByASmallerPresentation(ClassGroup(H7));
329
<A free left module of rank 2 on free generators>
330
gap> Display(RingMorphismOfDivisor(D));
331
Q[x_1,x_2,x_3,x_4]
332
(weights: [ [ 1, -7 ], [ 0, 1 ], [ 1, 0 ], [ 0, 1 ] ])
333
 ^
334
 |
335
[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6, 
336
 x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3, 
337
 x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]
338
 |
339
 |
340
Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]
341
(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
342
gap> MonomsOfCoxRingOfDegree(D);
343
[ x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6, 
344
 x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3, 
345
 x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8 ]
346
gap> D2:=D-2*P[2];
347
<A divisor of a toric variety with coordinates [ 0, -2, 1, 1 ]>
348
gap> IsBasepointFree(D2);
349
false
350
gap> IsAmple(D2);
351
false
352

353
354
355