CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
3
Index
4
5
* (for toric divisors) 8.4-9
6
+ 8.4-7
7
- 8.4-8
8
\* 3.4-3
9
AddDivisorToItsAmbientVariety 8.4-5
10
AffineCone 6.3-1
11
AffineOpenCovering 3.3-1
12
AmbientToricVariety 4.3-3
13
AmbientToricVariety (for toric divisors) 8.3-8
14
BasisOfGlobalSections 8.3-6
15
CartierData 8.3-1
16
CartierTorusInvariantDivisorGroup 3.3-18
17
CharacterLattice 3.3-12
18
CharacterOfPrincipalDivisor 8.3-2
19
CharactersForClosedEmbedding 8.4-2
20
CharacterToRationalFunction 3.4-4
21
ClassGroup 3.3-4
22
ClassGroup (for toric morphisms) 7.3-6
23
ClassOfDivisor 8.3-4
24
ClosureOfTorusOrbitOfCone 4.4-1
25
Cone 5.4-2
26
ConeOfVariety 5.3-4
27
CoordinateRing 5.3-1
28
CoordinateRing (for affine Varieties) 5.4-1
29
CoordinateRingOfTorus 3.3-10
30
CoordinateRingOfTorus (for a variety and a list of variables) 3.4-2
31
CoxRing 3.3-2
32
CoxRing (for a variety and a string of variables) 3.4-5
33
CoxRingOfTargetOfDivisorMorphism 8.3-13
34
CoxVariety 3.3-16
35
CreateDivisor (for a homalg element) 8.5-3
36
CreateDivisor (for a list of integers) 8.5-4
37
DegreeOfDivisor 8.3-11
38
Dimension 3.3-8
39
DimensionOfTorusfactor 3.3-9
40
DivisorOfCharacter 8.5-1
41
DivisorOfCharacter (for a list of integers) 8.5-2
42
DivisorOfGivenClass 8.4-4
43
Fan 3.4-7
44
FanOfVariety 3.3-17
45
HasNoTorusfactor 3.2-7
46
HasTorusfactor 3.2-6
47
InclusionMorphism 4.3-2
48
IntegerForWhichIsSureVeryAmple 8.3-7
49
IrrelevantIdeal 3.3-14
50
IsAffine 3.2-2
51
IsAffineToricVariety 5.1-1
52
IsAmple 8.2-5
53
IsBasepointFree 8.2-4
54
IsCartier 8.2-1
55
IsClosed 4.2-1
56
IsComplete 3.2-4
57
IsMorphism 7.2-1
58
IsNormalVariety 3.2-1
59
IsOpen 4.2-2
60
IsOrbifold 3.2-8
61
IsPrimedivisor 8.2-3
62
IsPrincipal 8.2-2
63
IsProductOf 3.3-11
64
IsProjective 3.2-3
65
IsProjectiveToricVariety 6.1-1
66
IsProper 7.2-2
67
IsSmooth 3.2-5
68
IsToricDivisor 8.1-1
69
IsToricMorphism 7.1-1
70
IsToricSubvariety 4.1-1
71
IsToricVariety 3.1-1
72
IsVeryAmple 8.2-6
73
IsWholeVariety 4.2-3
74
ListOfVariablesOfCoordinateRing 5.3-2
75
ListOfVariablesOfCoxRing 3.3-3
76
MapFromCharacterToPrincipalDivisor 3.3-7
77
MonomsOfCoxRingOfDegree 8.3-12
78
MonomsOfCoxRingOfDegree (for an homalg element) 8.4-3
79
MorphismFromCoordinateRingToCoordinateRingOfTorus 5.3-3
80
MorphismFromCoxVariety 3.3-15
81
MorphismOnCartierDivisorGroup 7.3-7
82
MorphismOnWeilDivisorGroup 7.3-5
83
NameOfVariety 3.3-19
84
PicardGroup 3.3-5
85
PicardGroup (for toric morphisms) 7.3-8
86
Polytope 6.4-1
87
Polytope (for toric divisors) 8.4-6
88
PolytopeOfDivisor 8.3-5
89
PolytopeOfVariety 6.3-2
90
ProjectiveEmbedding 6.3-3
91
RangeObject 7.3-4
92
RingMorphismOfDivisor 8.3-14
93
SourceObject 7.3-1
94
ToricImageObject 7.3-3
95
ToricMorphism (for a source and a matrix) 7.5-1
96
ToricMorphism (for a source, matrix and target) 7.5-2
97
ToricSubvariety 4.5-1
98
ToricVarieties .-3
99
ToricVariety 3.5-1
100
ToricVarietyOfDivisor 8.3-3
101
TorusInvariantDivisorGroup 3.3-6
102
TorusInvariantPrimeDivisors 3.3-13
103
twitter 3.3-20
104
UnderlyingGridMorphism 7.3-2
105
UnderlyingGroupElement 8.3-9
106
UnderlyingListList 7.4-1
107
UnderlyingSheaf 3.4-1
108
UnderlyingToricVariety 4.3-1
109
UnderlyingToricVariety (for prime divisors) 8.3-10
110
VeryAmpleMultiple 8.4-1
111
WeilDivisorsOfVariety 3.4-6
112
113
114
-------------------------------------------------------
115
116