Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41834612[1XIndex[101X34[2X*[102X (for toric divisors) 8.4-95[2X+[102X 8.4-76[2X-[102X 8.4-87[2X\*[102X 3.4-38[2XAddDivisorToItsAmbientVariety[102X 8.4-59[2XAffineCone[102X 6.3-110[2XAffineOpenCovering[102X 3.3-111[2XAmbientToricVariety[102X 4.3-312[2XAmbientToricVariety[102X (for toric divisors) 8.3-813[2XBasisOfGlobalSections[102X 8.3-614[2XCartierData[102X 8.3-115[2XCartierTorusInvariantDivisorGroup[102X 3.3-1816[2XCharacterLattice[102X 3.3-1217[2XCharacterOfPrincipalDivisor[102X 8.3-218[2XCharactersForClosedEmbedding[102X 8.4-219[2XCharacterToRationalFunction[102X 3.4-420[2XClassGroup[102X 3.3-421[2XClassGroup[102X (for toric morphisms) 7.3-622[2XClassOfDivisor[102X 8.3-423[2XClosureOfTorusOrbitOfCone[102X 4.4-124[2XCone[102X 5.4-225[2XConeOfVariety[102X 5.3-426[2XCoordinateRing[102X 5.3-127[2XCoordinateRing[102X (for affine Varieties) 5.4-128[2XCoordinateRingOfTorus[102X 3.3-1029[2XCoordinateRingOfTorus[102X (for a variety and a list of variables) 3.4-230[2XCoxRing[102X 3.3-231[2XCoxRing[102X (for a variety and a string of variables) 3.4-532[2XCoxRingOfTargetOfDivisorMorphism[102X 8.3-1333[2XCoxVariety[102X 3.3-1634[2XCreateDivisor[102X (for a homalg element) 8.5-335[2XCreateDivisor[102X (for a list of integers) 8.5-436[2XDegreeOfDivisor[102X 8.3-1137[2XDimension[102X 3.3-838[2XDimensionOfTorusfactor[102X 3.3-939[2XDivisorOfCharacter[102X 8.5-140[2XDivisorOfCharacter[102X (for a list of integers) 8.5-241[2XDivisorOfGivenClass[102X 8.4-442[2XFan[102X 3.4-743[2XFanOfVariety[102X 3.3-1744[2XHasNoTorusfactor[102X 3.2-745[2XHasTorusfactor[102X 3.2-646[2XInclusionMorphism[102X 4.3-247[2XIntegerForWhichIsSureVeryAmple[102X 8.3-748[2XIrrelevantIdeal[102X 3.3-1449[2XIsAffine[102X 3.2-250[2XIsAffineToricVariety[102X 5.1-151[2XIsAmple[102X 8.2-552[2XIsBasepointFree[102X 8.2-453[2XIsCartier[102X 8.2-154[2XIsClosed[102X 4.2-155[2XIsComplete[102X 3.2-456[2XIsMorphism[102X 7.2-157[2XIsNormalVariety[102X 3.2-158[2XIsOpen[102X 4.2-259[2XIsOrbifold[102X 3.2-860[2XIsPrimedivisor[102X 8.2-361[2XIsPrincipal[102X 8.2-262[2XIsProductOf[102X 3.3-1163[2XIsProjective[102X 3.2-364[2XIsProjectiveToricVariety[102X 6.1-165[2XIsProper[102X 7.2-266[2XIsSmooth[102X 3.2-567[2XIsToricDivisor[102X 8.1-168[2XIsToricMorphism[102X 7.1-169[2XIsToricSubvariety[102X 4.1-170[2XIsToricVariety[102X 3.1-171[2XIsVeryAmple[102X 8.2-672[2XIsWholeVariety[102X 4.2-373[2XListOfVariablesOfCoordinateRing[102X 5.3-274[2XListOfVariablesOfCoxRing[102X 3.3-375[2XMapFromCharacterToPrincipalDivisor[102X 3.3-776[2XMonomsOfCoxRingOfDegree[102X 8.3-1277[2XMonomsOfCoxRingOfDegree[102X (for an homalg element) 8.4-378[2XMorphismFromCoordinateRingToCoordinateRingOfTorus[102X 5.3-379[2XMorphismFromCoxVariety[102X 3.3-1580[2XMorphismOnCartierDivisorGroup[102X 7.3-781[2XMorphismOnWeilDivisorGroup[102X 7.3-582[2XNameOfVariety[102X 3.3-1983[2XPicardGroup[102X 3.3-584[2XPicardGroup[102X (for toric morphisms) 7.3-885[2XPolytope[102X 6.4-186[2XPolytope[102X (for toric divisors) 8.4-687[2XPolytopeOfDivisor[102X 8.3-588[2XPolytopeOfVariety[102X 6.3-289[2XProjectiveEmbedding[102X 6.3-390[2XRangeObject[102X 7.3-491[2XRingMorphismOfDivisor[102X 8.3-1492[2XSourceObject[102X 7.3-193[2XToricImageObject[102X 7.3-394[2XToricMorphism[102X (for a source and a matrix) 7.5-195[2XToricMorphism[102X (for a source, matrix and target) 7.5-296[2XToricSubvariety[102X 4.5-197[5XToricVarieties[105X .-398[2XToricVariety[102X 3.5-199[2XToricVarietyOfDivisor[102X 8.3-3100[2XTorusInvariantDivisorGroup[102X 3.3-6101[2XTorusInvariantPrimeDivisors[102X 3.3-13102[2Xtwitter[102X 3.3-20103[2XUnderlyingGridMorphism[102X 7.3-2104[2XUnderlyingGroupElement[102X 8.3-9105[2XUnderlyingListList[102X 7.4-1106[2XUnderlyingSheaf[102X 3.4-1107[2XUnderlyingToricVariety[102X 4.3-1108[2XUnderlyingToricVariety[102X (for prime divisors) 8.3-10109[2XVeryAmpleMultiple[102X 8.4-1110[2XWeilDivisorsOfVariety[102X 3.4-6111112113-------------------------------------------------------114115116