Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X3 [33X[0;0Y2d-mappings[133X[101X234[1X3.1 [33X[0;0YMorphisms of 2-dimensional groups[133X[101X56[33X[0;0YThis chapter describes morphisms of (pre-)crossed modules and7(pre-)cat1-groups.[133X89[1X3.1-1 Source[101X1011[29X[2XSource[102X( [3Xmap[103X ) [32X attribute12[29X[2XRange[102X( [3Xmap[103X ) [32X attribute13[29X[2XSourceHom[102X( [3Xmap[103X ) [32X attribute14[29X[2XRangeHom[102X( [3Xmap[103X ) [32X attribute1516[33X[0;0YMorphisms of [13X2-dimensional groups[113X are implemented as [13X2-dimensional mappings[113X.17These have a pair of 2-dimensional groups as source and range, together with18two group homomorphisms mapping between corresponding source and range19groups. These functions return [10Xfail[110X when invalid data is supplied.[133X202122[1X3.2 [33X[0;0YMorphisms of pre-crossed modules[133X[101X2324[1X3.2-1 IsXModMorphism[101X2526[29X[2XIsXModMorphism[102X( [3Xmap[103X ) [32X property27[29X[2XIsPreXModMorphism[102X( [3Xmap[103X ) [32X property2829[33X[0;0YA morphism between two pre-crossed modules [22XmathcalX_1 = (∂_1 : S_1 -> R_1)[122X30and [22XmathcalX_2 = (∂_2 : S_2 -> R_2)[122X is a pair [22X(σ, ρ)[122X, where [22Xσ : S_1 -> S_2[122X31and [22Xρ : R_1 -> R_2[122X commute with the two boundary maps and are morphisms for32the two actions:[133X333435[24X[33X[0;6Y\partial_2 \circ \sigma ~=~ \rho \circ \partial_1, \qquad \sigma(s^r) ~=~36(\sigma s)^{\rho r}.[133X3738[124X3940[33X[0;0YHere is a diagram of the situation.[133X414243[24X[33X[0;6Y\vcenter{\xymatrix{ S_1 \ar[rr]^{\sigma} \ar[dd]_{\partial_1} && S_244\ar[dd]^{\partial_2} \\ && \\ R_1 \ar[rr]_{\rho} && R_2 }}[133X4546[124X4748[33X[0;0YHere [22Xσ[122X is the [10XSourceHom[110X and [22Xρ[122X is the [10XRangeHom[110X of the morphism. When49[22XmathcalX_1 = mathcalX_2[122X and [22Xσ, ρ[122X are automorphisms then [22X(σ, ρ)[122X is an50automorphism of [22XmathcalX_1[122X. The group of automorphisms is denoted by51[22XAut(mathcalX_1 )[122X.[133X5253[1X3.2-2 IsInjective[101X5455[29X[2XIsInjective[102X( [3Xmap[103X ) [32X property56[29X[2XIsSurjective[102X( [3Xmap[103X ) [32X property57[29X[2XIsSingleValued[102X( [3Xmap[103X ) [32X property58[29X[2XIsTotal[102X( [3Xmap[103X ) [32X property59[29X[2XIsBijective[102X( [3Xmap[103X ) [32X property60[29X[2XIsEndo2DimensionalMapping[102X( [3Xmap[103X ) [32X property6162[33X[0;0YThe usual properties of mappings are easily checked. It is usually63sufficient to verify that both the [10XSourceHom[110X and the [10XRangeHom[110X have the64required property.[133X6566[1X3.2-3 XModMorphism[101X6768[29X[2XXModMorphism[102X( [3Xargs[103X ) [32X function69[29X[2XXModMorphismByHoms[102X( [3XX1[103X, [3XX2[103X, [3Xsigma[103X, [3Xrho[103X ) [32X operation70[29X[2XPreXModMorphism[102X( [3Xargs[103X ) [32X function71[29X[2XPreXModMorphismByHoms[102X( [3XP1[103X, [3XP2[103X, [3Xsigma[103X, [3Xrho[103X ) [32X operation72[29X[2XInclusionMorphism2DimensionalDomains[102X( [3XX1[103X, [3XS1[103X ) [32X operation73[29X[2XInnerAutomorphismXMod[102X( [3XX1[103X, [3Xr[103X ) [32X operation74[29X[2XIdentityMapping[102X( [3XX1[103X ) [32X attribute7576[33X[0;0YThese are the constructors for morphisms of pre-crossed and crossed modules.[133X7778[33X[0;0YIn the following example we construct a simple automorphism of the crossed79module [10XX1[110X constructed in the previous chapter.[133X8081[4X[32X Example [32X[104X82[4X[28X[128X[104X83[4X[25Xgap>[125X [27Xsigma1 := GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ][127X[104X84[4X[28X [ (5,9,8,7,6) ] );;[128X[104X85[4X[25Xgap>[125X [27Xrho1 := IdentityMapping( Range( X1 ) );[127X[104X86[4X[28XIdentityMapping( PAut(c5) )[128X[104X87[4X[25Xgap>[125X [27Xmor1 := XModMorphism( X1, X1, sigma1, rho1 );[127X[104X88[4X[28X[[c5->PAut(c5))] => [c5->PAut(c5))]] [128X[104X89[4X[25Xgap>[125X [27XDisplay( mor1 );[127X[104X90[4X[28XMorphism of crossed modules :-[128X[104X91[4X[28X: Source = [c5->PAut(c5))] with generating sets:[128X[104X92[4X[28X [ (5,6,7,8,9) ][128X[104X93[4X[28X [ (1,2,3,4) ][128X[104X94[4X[28X: Range = Source[128X[104X95[4X[28X: Source Homomorphism maps source generators to:[128X[104X96[4X[28X [ (5,9,8,7,6) ][128X[104X97[4X[28X: Range Homomorphism maps range generators to:[128X[104X98[4X[28X [ (1,2,3,4) ][128X[104X99[4X[25Xgap>[125X [27XIsAutomorphism2DimensionalDomain( mor1 );[127X[104X100[4X[28Xtrue [128X[104X101[4X[25Xgap>[125X [27XOrder( mor1 );[127X[104X102[4X[28X2[128X[104X103[4X[25Xgap>[125X [27XRepresentationsOfObject( mor1 );[127X[104X104[4X[28X[ "IsComponentObjectRep", "IsAttributeStoringRep", "Is2DimensionalMappingRep" ][128X[104X105[4X[25Xgap>[125X [27XKnownPropertiesOfObject( mor1 );[127X[104X106[4X[28X[ "CanEasilyCompareElements", "CanEasilySortElements", "IsTotal", [128X[104X107[4X[28X "IsSingleValued", "IsInjective", "IsSurjective", "RespectsMultiplication", [128X[104X108[4X[28X "IsPreXModMorphism", "IsXModMorphism", "IsEndomorphism2DimensionalDomain", [128X[104X109[4X[28X "IsAutomorphism2DimensionalDomain" ][128X[104X110[4X[25Xgap>[125X [27XKnownAttributesOfObject( mor1 );[127X[104X111[4X[28X[ "Name", "Order", "Range", "Source", "SourceHom", "RangeHom" ][128X[104X112[4X[28X[128X[104X113[4X[32X[104X114115[1X3.2-4 IsomorphismPerm2DimensionalGroup[101X116117[29X[2XIsomorphismPerm2DimensionalGroup[102X( [3Xobj[103X ) [32X attribute118[29X[2XIsomorphismPc2DimensionalGroup[102X( [3Xobj[103X ) [32X attribute119[29X[2XIsomorphismByIsomorphisms[102X( [3XD[103X, [3Xlist[103X ) [32X operation120121[33X[0;0YWhen [22Xmathcal D[122X is a [22X2[122X-dimensional domain with source [22XS[122X and range [22XR[122X and [22Xσ : S122-> S',~ ρ : R -> R'[122X are isomorphisms, then123[10XIsomorphismByIsomorphisms(D,[sigma,rho])[110X returns an isomorphism [22X(σ,ρ) :124mathcal D -> mathcal D'[122X where [22Xmathcal D'[122X has source [22XS'[122X and range [22XR'[122X. Be sure125to test [10XIsBijective[110X for the two functions [22Xσ,ρ[122X before applying this126operation.[133X127128[33X[0;0YUsing [10XIsomorphismByIsomorphisms[110X with a pair of isomorphisms obtained using129[10XIsomorphismPermGroup[110X or [10XIsomorphismPcGroup[110X, we may construct a crossed130module or a cat1-group of permutation groups or pc-groups.[133X131132[4X[32X Example [32X[104X133[4X[28X[128X[104X134[4X[25Xgap>[125X [27Xq8 := SmallGroup(8,4);; ## quaternion group [127X[104X135[4X[25Xgap>[125X [27XXq8 := XModByAutomorphismGroup( q8 );[127X[104X136[4X[28X[Group( [ f1, f2, f3 ] )->Group( [ f1, f2, f3, f4 ] )][128X[104X137[4X[25Xgap>[125X [27Xiso := IsomorphismPerm2DimensionalGroup( Xq8 );;[127X[104X138[4X[25Xgap>[125X [27XYq8 := Image( iso );[127X[104X139[4X[28X[Group( [ (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8) [128X[104X140[4X[28X ] )->Group( [ (2,6,5,4), (1,2,4)(3,5,6), (2,5)(4,6), (1,3)(2,5) ] )][128X[104X141[4X[25Xgap>[125X [27Xs4 := SymmetricGroup(4);; [127X[104X142[4X[25Xgap>[125X [27Xisos4 := IsomorphismGroups( Range(Yq8), s4 );;[127X[104X143[4X[25Xgap>[125X [27Xid := IdentityMapping( Source( Yq8 ) );; [127X[104X144[4X[25Xgap>[125X [27XIsBijective( id );; IsBijective( isos4 );;[127X[104X145[4X[25Xgap>[125X [27Xmor := IsomorphismByIsomorphisms( Yq8, [id,isos4] );;[127X[104X146[4X[25Xgap>[125X [27XZq8 := Image( mor );[127X[104X147[4X[28X[Group( [ (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8) [128X[104X148[4X[28X ] )->SymmetricGroup( [ 1 .. 4 ] )][128X[104X149[4X[28X[128X[104X150[4X[32X[104X151152153[1X3.3 [33X[0;0YMorphisms of pre-cat1-groups[133X[101X154155[33X[0;0YA morphism of pre-cat1-groups from [22XmathcalC_1 = (e_1;t_1,h_1 : G_1 -> R_1)[122X156to [22XmathcalC_2 = (e_2;t_2,h_2 : G_2 -> R_2)[122X is a pair [22X(γ, ρ)[122X where [22Xγ : G_1 ->157G_2[122X and [22Xρ : R_1 -> R_2[122X are homomorphisms satisfying[133X158159160[24X[33X[0;6Yh_2 \circ \gamma ~=~ \rho \circ h_1, \qquad t_2 \circ \gamma ~=~ \rho \circ161t_1, \qquad e_2 \circ \rho ~=~ \gamma \circ e_1.[133X162163[124X164165[1X3.3-1 IsCat1Morphism[101X166167[29X[2XIsCat1Morphism[102X( [3Xmap[103X ) [32X property168[29X[2XIsPreCat1Morphism[102X( [3Xmap[103X ) [32X property169[29X[2XCat1Morphism[102X( [3Xargs[103X ) [32X function170[29X[2XCat1MorphismByHoms[102X( [3XC1[103X, [3XC2[103X, [3Xgamma[103X, [3Xrho[103X ) [32X operation171[29X[2XPreCat1Morphism[102X( [3Xargs[103X ) [32X function172[29X[2XPreCat1MorphismByHoms[102X( [3XP1[103X, [3XP2[103X, [3Xgamma[103X, [3Xrho[103X ) [32X operation173[29X[2XInclusionMorphism2DimensionalDomains[102X( [3XC1[103X, [3XS1[103X ) [32X operation174[29X[2XInnerAutomorphismCat1[102X( [3XC1[103X, [3Xr[103X ) [32X operation175[29X[2XIdentityMapping[102X( [3XC1[103X ) [32X attribute176177[33X[0;0YFor an example we form a second cat1-group [10XC2=[g18=>s3a][110X, similar to [10XC1[110X in178[14X2.4-1[114X, then construct an isomorphism [22X(γ,ρ)[122X between them.[133X179180[4X[32X Example [32X[104X181[4X[28X[128X[104X182[4X[25Xgap>[125X [27Xt2 := GroupHomomorphismByImages(g18,s3a,g18gens,[(),(7,8,9),(8,9)]);; [127X[104X183[4X[25Xgap>[125X [27Xe2 := GroupHomomorphismByImages(s3a,g18,s3agens,[(4,5,6),(2,3)(5,6)]);; [127X[104X184[4X[25Xgap>[125X [27XC2 := Cat1Group( t2, h1, e2 );; [127X[104X185[4X[25Xgap>[125X [27Ximgamma := [ (4,5,6), (1,2,3), (2,3)(5,6) ];; [127X[104X186[4X[25Xgap>[125X [27Xgamma := GroupHomomorphismByImages( g18, g18, g18gens, imgamma );;[127X[104X187[4X[25Xgap>[125X [27Xrho := IdentityMapping( s3a );; [127X[104X188[4X[25Xgap>[125X [27Xmor := Cat1Morphism( C1, C2, gamma, rho );;[127X[104X189[4X[25Xgap>[125X [27XDisplay( mor );;[127X[104X190[4X[28XMorphism of cat1-groups :- [128X[104X191[4X[28X: Source = [g18=>s3a] with generating sets:[128X[104X192[4X[28X [ (1,2,3), (4,5,6), (2,3)(5,6) ][128X[104X193[4X[28X [ (7,8,9), (8,9) ][128X[104X194[4X[28X: Range = [g18=>s3a] with generating sets:[128X[104X195[4X[28X [ (1,2,3), (4,5,6), (2,3)(5,6) ][128X[104X196[4X[28X [ (7,8,9), (8,9) ][128X[104X197[4X[28X: Source Homomorphism maps source generators to:[128X[104X198[4X[28X [ (4,5,6), (1,2,3), (2,3)(5,6) ][128X[104X199[4X[28X: Range Homomorphism maps range generators to:[128X[104X200[4X[28X [ (7,8,9), (8,9) ][128X[104X201[4X[28X[128X[104X202[4X[32X[104X203204[1X3.3-2 IsomorphismPermObject[101X205206[29X[2XIsomorphismPermObject[102X( [3Xobj[103X ) [32X function207[29X[2XIsomorphismPerm2DimensionalGroup[102X( [3X2DimensionalGroup[103X ) [32X attribute208[29X[2XIsomorphismFp2DimensionalGroup[102X( [3X2DimensionalGroup[103X ) [32X attribute209[29X[2XIsomorphismPc2DimensionalGroup[102X( [3X2DimensionalGroup[103X ) [32X attribute210[29X[2XSmallerDegreePerm2DimensionalDomain[102X( [3X2DimensionalDomain[103X ) [32X function211212[33X[0;0YThe global function [10XIsomorphismPermObject[110X calls213[10XIsomorphismPerm2DimensionalGroup[110X, which constructs a morphism whose214[10XSourceHom[110X and [10XRangeHom[110X are calculated using [10XIsomorphismPermGroup[110X on the215source and range. Similarly [10XSmallerDegreePermutationRepresentation[110X may be216used on the two groups to obtain [10XSmallerDegreePerm2DimensionalDomain[110X. Names217are assigned automatically.[133X218219[4X[32X Example [32X[104X220[4X[28X[128X[104X221[4X[25Xgap>[125X [27Xiso2 := IsomorphismPerm2DimensionalGroup( C2 );[127X[104X222[4X[28X[[G2=>d12] => [..]][128X[104X223[4X[25Xgap>[125X [27XDisplay( iso2 );[127X[104X224[4X[28XMorphism of cat1-groups :- [128X[104X225[4X[28X: Source = [G2=>d12] with generating sets:[128X[104X226[4X[28X [ f1, f2, f3, f4, f5, f6, f7 ][128X[104X227[4X[28X [ f1, f2, f3 ][128X[104X228[4X[28X: Range = P[G2=>d12] with generating sets:[128X[104X229[4X[28X [ ( 6,12)( 8,15)( 9,16)(11,19)(13,26)(14,22)(17,27)(18,25)(20,21)(23,24), [128X[104X230[4X[28X ( 2, 3)( 5,10)( 9,16)(11,18)(17,23)(19,25)(24,27), [128X[104X231[4X[28X ( 4, 5, 7,10)( 6, 9,12,16)( 8,11,14,18)(13,17,20,23)(15,19,22,25)[128X[104X232[4X[28X (21,24,26,27), ( 4, 6, 7,12)( 5, 9,10,16)( 8,13,14,20)(11,17,18,23)[128X[104X233[4X[28X (15,21,22,26)(19,24,25,27), ( 4, 7)( 5,10)( 6,12)( 8,14)( 9,16)(11,18)[128X[104X234[4X[28X (13,20)(15,22)(17,23)(19,25)(21,26)(24,27), ( 1, 2, 3), [128X[104X235[4X[28X ( 4, 8,15)( 5,11,19)( 6,13,21)( 7,14,22)( 9,17,24)(10,18,25)(12,20,26)[128X[104X236[4X[28X (16,23,27) ][128X[104X237[4X[28X [ (2,6)(3,5), (1,2,3,4,5,6), (1,3,5)(2,4,6) ][128X[104X238[4X[28X: Source Homomorphism maps source generators to:[128X[104X239[4X[28X [ ( 6,12)( 8,15)( 9,16)(11,19)(13,26)(14,22)(17,27)(18,25)(20,21)(23,24), [128X[104X240[4X[28X ( 2, 3)( 5,10)( 9,16)(11,18)(17,23)(19,25)(24,27), [128X[104X241[4X[28X ( 4, 5, 7,10)( 6, 9,12,16)( 8,11,14,18)(13,17,20,23)(15,19,22,25)[128X[104X242[4X[28X (21,24,26,27), ( 4, 6, 7,12)( 5, 9,10,16)( 8,13,14,20)(11,17,18,23)[128X[104X243[4X[28X (15,21,22,26)(19,24,25,27), ( 4, 7)( 5,10)( 6,12)( 8,14)( 9,16)(11,18)[128X[104X244[4X[28X (13,20)(15,22)(17,23)(19,25)(21,26)(24,27), ( 1, 2, 3), [128X[104X245[4X[28X ( 4, 8,15)( 5,11,19)( 6,13,21)( 7,14,22)( 9,17,24)(10,18,25)(12,20,26)[128X[104X246[4X[28X (16,23,27) ][128X[104X247[4X[28X: Range Homomorphism maps range generators to:[128X[104X248[4X[28X [ (2,6)(3,5), (1,2,3,4,5,6), (1,3,5)(2,4,6) ][128X[104X249[4X[28X[128X[104X250[4X[32X[104X251252253[1X3.4 [33X[0;0YOperations on morphisms[133X[101X254255[1X3.4-1 CompositionMorphism[101X256257[29X[2XCompositionMorphism[102X( [3Xmap2[103X, [3Xmap1[103X ) [32X operation258259[33X[0;0YComposition of morphisms (written [10X(<map1> * <map2>)[110X when maps act on the260right) calls the [10XCompositionMorphism[110X function for maps (acting on the left),261applied to the appropriate type of 2d-mapping.[133X262263[4X[32X Example [32X[104X264[4X[28X[128X[104X265[4X[25Xgap>[125X [27XH2 := Subgroup(G2,[G2.3,G2.4,G2.6,G2.7]); SetName( H2, "H2" );[127X[104X266[4X[28XGroup([ f3, f4, f6, f7 ])[128X[104X267[4X[25Xgap>[125X [27Xc6 := Subgroup( d12, [b,c] ); SetName( c6, "c6" );[127X[104X268[4X[28XGroup([ f2, f3 ])[128X[104X269[4X[25Xgap>[125X [27XSC2 := Sub2DimensionalGroup( C2, H2, c6 );[127X[104X270[4X[28X[H2=>c6][128X[104X271[4X[25Xgap>[125X [27XIsCat1Group( SC2 );[127X[104X272[4X[28Xtrue[128X[104X273[4X[25Xgap>[125X [27Xinc2 := InclusionMorphism2DimensionalDomains( C2, SC2 );[127X[104X274[4X[28X[[H2=>c6] => [G2=>d12]][128X[104X275[4X[25Xgap>[125X [27XCompositionMorphism( iso2, inc ); [127X[104X276[4X[28X[[H2=>c6] => P[G2=>d12]][128X[104X277[4X[28X[128X[104X278[4X[32X[104X279280[1X3.4-2 Kernel[101X281282[29X[2XKernel[102X( [3Xmap[103X ) [32X operation283[29X[2XKernel2DimensionalMapping[102X( [3Xmap[103X ) [32X attribute284285[33X[0;0YThe kernel of a morphism of crossed modules is a normal subcrossed module286whose groups are the kernels of the source and target homomorphisms. The287inclusion of the kernel is a standard example of a crossed square, but these288have not yet been implemented.[133X289290[4X[32X Example [32X[104X291[4X[28X[128X[104X292[4X[25Xgap>[125X [27Xc2 := Group( (19,20) ); [127X[104X293[4X[28XGroup([ (19,20) ])[128X[104X294[4X[25Xgap>[125X [27XX0 := XModByNormalSubgroup( c2, c2 ); SetName( X0, "X0" );[127X[104X295[4X[28X[Group( [ (19,20) ] )->Group( [ (19,20) ] )][128X[104X296[4X[25Xgap>[125X [27X SX2 := Source( X2 );;[127X[104X297[4X[25Xgap>[125X [27XgenSX2 := GeneratorsOfGroup( SX2 ); [127X[104X298[4X[28X[ f1, f4, f5, f7 ][128X[104X299[4X[25Xgap>[125X [27Xsigma0 := GroupHomomorphismByImages(SX2,c2,genSX2,[(19,20),(),(),()]);[127X[104X300[4X[28X[ f1, f4, f5, f7 ] -> [ (19,20), (), (), () ][128X[104X301[4X[25Xgap>[125X [27Xrho0 := GroupHomomorphismByImages(d12,c2,[a1,a2,a3],[(19,20),(),()]);[127X[104X302[4X[28X[ f1, f2, f3 ] -> [ (19,20), (), () ][128X[104X303[4X[25Xgap>[125X [27Xmor0 := XModMorphism( X2, X0, sigma0, rho0 );; [127X[104X304[4X[25Xgap>[125X [27XK0 := Kernel( mor0 );;[127X[104X305[4X[25Xgap>[125X [27XStructureDescription( K0 );[127X[104X306[4X[28X[ "C12", "C6" ][128X[104X307[4X[32X[104X308309310311