Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X5 [33X[0;0YDerivations and Sections[133X[101X234[1X5.1 [33X[0;0YWhitehead Multiplication[133X[101X56[1X5.1-1 IsDerivation[101X78[29X[2XIsDerivation[102X( [3Xmap[103X ) [32X property9[29X[2XIsSection[102X( [3Xmap[103X ) [32X property10[29X[2XIsUp2DimensionalMapping[102X( [3Xmap[103X ) [32X property1112[33X[0;0YThe Whitehead monoid [22XDer(mathcalX)[122X of [22XmathcalX[122X was defined in [Whi48] to be13the monoid of all [13Xderivations[113X from [22XR[122X to [22XS[122X, that is the set of all maps [22Xχ : R14-> S[122X, with [13XWhitehead multiplication[113X [22X⋆[122X (on the [13Xright[113X) satisfying:[133X151617[24X[33X[0;6Y{\bf Der\ 1}: \chi(qr) ~=~ (\chi q)^{r} \; (\chi r), \qquad {\bf Der\ 2}:18(\chi_1 \star \chi_2)(r) ~=~ (\chi_2 r)(\chi_1 r)(\chi_2 \partial \chi_1 r).[133X1920[124X2122[33X[0;0YThe zero map is the identity for this composition. Invertible elements in23the monoid are called [13Xregular[113X. The Whitehead group of [22XmathcalX[122X is the group24of regular derivations in [22XDer(mathcalX )[122X. In the next chapter the [13Xactor[113X of25[22XmathcalX[122X is defined as a crossed module whose source and range are26permutation representations of the Whitehead group and the automorphism27group of [22XmathcalX[122X.[133X2829[33X[0;0YThe construction for cat1-groups equivalent to the derivation of a crossed30module is the [13Xsection[113X. The monoid of sections of [22XmathcalC = (e;t,h : G -> R)[122X31is the set of group homomorphisms [22Xξ : R -> G[122X, with Whitehead multiplication32[22X⋆[122X (on the [13Xright[113X) satisfying:[133X333435[24X[33X[0;6Y{\bf Sect\ 1}: t \circ \xi ~=~ {\rm id}_R, \quad {\bf Sect\ 2}: (\xi_1 \star36\xi_2)(r) ~=~ (\xi_1 r)(e h \xi_1 r)^{-1}(\xi_2 h \xi_1 r) ~=~ (\xi_2 h37\xi_1 r)(e h \xi_1 r)^{-1}(\xi_1 r).[133X3839[124X4041[33X[0;0YThe embedding [22Xe[122X is the identity for this composition, and [22Xh(ξ_1 ⋆ ξ_2) = (h42ξ_1)(h ξ_2)[122X. A section is [13Xregular[113X when [22Xh ξ[122X is an automorphism, and the group43of regular sections is isomorphic to the Whitehead group.[133X4445[33X[0;0YIf [22Xϵ[122X denotes the inclusion of [22XS = ker t[122X in [22XG[122X then [22X∂ = h ϵ : S -> R[122X and[133X464748[24X[33X[0;6Y\xi r ~=~ (e r)(e \chi r), \quad\mbox{which equals}\quad (r, \chi r) ~\in~ R49\ltimes S,[133X5051[124X5253[33X[0;0Ydetermines a section [22Xξ[122X of [22XmathcalC[122X in terms of the corresponding derivation54[22Xχ[122X of [22XmathcalX[122X, and conversely.[133X5556[1X5.1-2 DerivationByImages[101X5758[29X[2XDerivationByImages[102X( [3XX0[103X, [3Xims[103X ) [32X operation5960[33X[0;0YDerivations are stored like group homomorphisms by specifying the images of61a generating set. Images of the remaining elements may then be obtained62using axiom [22XDer 1[122X. The function [10XIsDerivation[110X is automatically called to63check that this procedure is well-defined.[133X6465[33X[0;0YIn the following example a cat1-group [10XC3[110X and the associated crossed module66[10XX3[110X are constructed, where [10XX3[110X is isomorphic to the inclusion of the normal67cyclic group [10Xc3[110X in the symmetric group [10Xs3[110X.[133X6869[4X[32X Example [32X[104X70[4X[28X[128X[104X71[4X[25Xgap>[125X [27Xg18 := Group( (1,2,3), (4,5,6), (2,3)(5,6) );;[127X[104X72[4X[25Xgap>[125X [27XSetName( g18, "g18" );[127X[104X73[4X[25Xgap>[125X [27Xgen18 := GeneratorsOfGroup( g18 );;[127X[104X74[4X[25Xgap>[125X [27Xg1 := gen18[1];; g2 := gen18[2];; g3 := gen18[3];;[127X[104X75[4X[25Xgap>[125X [27Xs3 := Subgroup( g18, gen18{[2..3]} );;[127X[104X76[4X[25Xgap>[125X [27XSetName( s3, "s3" );;[127X[104X77[4X[25Xgap>[125X [27Xt := GroupHomomorphismByImages( g18, s3, gen18, [g2,g2,g3] );;[127X[104X78[4X[25Xgap>[125X [27Xh := GroupHomomorphismByImages( g18, s3, gen18, [(),g2,g3] );;[127X[104X79[4X[25Xgap>[125X [27Xe := GroupHomomorphismByImages( s3, g18, [g2,g3], [g2,g3] );;[127X[104X80[4X[25Xgap>[125X [27XC3 := Cat1( t, h, e );[127X[104X81[4X[28X[g18=>s3][128X[104X82[4X[25Xgap>[125X [27XSetName( Kernel(t), "c3" );;[127X[104X83[4X[25Xgap>[125X [27XX3 := XModOfCat1( C3 );;[127X[104X84[4X[25Xgap>[125X [27XDisplay( X3 );[127X[104X85[4X[28XCrossed module [c3->s3] :- [128X[104X86[4X[28X: Source group has generators:[128X[104X87[4X[28X [ (1,2,3)(4,6,5) ][128X[104X88[4X[28X: Range group has generators:[128X[104X89[4X[28X [ (4,5,6), (2,3)(5,6) ][128X[104X90[4X[28X: Boundary homomorphism maps source generators to:[128X[104X91[4X[28X [ (4,6,5) ][128X[104X92[4X[28X: Action homomorphism maps range generators to automorphisms:[128X[104X93[4X[28X (4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }[128X[104X94[4X[28X (2,3)(5,6) --> { source gens --> [ (1,3,2)(4,5,6) ] }[128X[104X95[4X[28X These 2 automorphisms generate the group of automorphisms.[128X[104X96[4X[28X: associated cat1-group is [g18=>s3][128X[104X97[4X[28X[128X[104X98[4X[25Xgap>[125X [27Ximchi := [ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ];;[127X[104X99[4X[25Xgap>[125X [27Xchi := DerivationByImages( X3, imchi );[127X[104X100[4X[28XDerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],[128X[104X101[4X[28X[ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ] )[128X[104X102[4X[28X[128X[104X103[4X[32X[104X104105[1X5.1-3 SectionByImages[101X106107[29X[2XSectionByImages[102X( [3XC[103X, [3Xims[103X ) [32X operation108[29X[2XSectionByDerivation[102X( [3Xchi[103X ) [32X operation109[29X[2XDerivationBySection[102X( [3Xxi[103X ) [32X operation110111[33X[0;0YSections [13Xare[113X group homomorphisms, so do not need a special representation.112Operations [10XSectionByDerivation[110X and [10XDerivationBySection[110X convert derivations113to sections, and vice-versa, calling [10XCat1OfXMod[110X and [10XXModOfCat1[110X114automatically.[133X115116[33X[0;0YTwo strategies for calculating derivations and sections are implemented, see117[AW00]. The default method for [10XAllDerivations[110X is to search for all possible118sets of images using a backtracking procedure, and when all the derivations119are found it is not known which are regular. In early versions of this120package, the default method for [10XAllSections( <C> )[110X was to compute all121endomorphisms on the range group [10XR[110X of [10XC[110X as possibilities for the composite [22Xh122ξ[122X. A backtrack method then found possible images for such a section. In the123current version the derivations of the associated crossed module are124calculated, and these are all converted to sections using125[10XSectionByDerivation[110X.[133X126127[4X[32X Example [32X[104X128[4X[28X[128X[104X129[4X[25Xgap>[125X [27Xxi := SectionByDerivation( chi );[127X[104X130[4X[28XSectionByImages( s3, g18, [ (4,5,6), (2,3)(5,6) ], [ (1,2,3), (1,2)(4,6) ] )[128X[104X131[4X[28X[128X[104X132[4X[32X[104X133134135[1X5.2 [33X[0;0YWhitehead Groups and Monoids[133X[101X136137[1X5.2-1 RegularDerivations[101X138139[29X[2XRegularDerivations[102X( [3XX0[103X ) [32X attribute140[29X[2XAllDerivations[102X( [3XX0[103X ) [32X attribute141[29X[2XRegularSections[102X( [3XC0[103X ) [32X attribute142[29X[2XAllSections[102X( [3XC0[103X ) [32X attribute143[29X[2XImagesList[102X( [3Xobj[103X ) [32X attribute144[29X[2XImagesTable[102X( [3Xobj[103X ) [32X attribute145146[33X[0;0YThere are two functions to determine the elements of the Whitehead group and147the Whitehead monoid of a crossed module, namely [10XRegularDerivations[110X and148[10XAllDerivations[110X. (The functions [10XRegularSections[110X and [10XAllSections[110X perform149corresponding tasks for a cat1-group.)[133X150151[33X[0;0YUsing our example [10XX3[110X we find that there are just nine derivations. (In fact,152six of them regular, as we shall see in the next section. The associated153group is isomorphic to the symmetric group [10Xs3[110X.)[133X154155[4X[32X Example [32X[104X156[4X[28X[128X[104X157[4X[25Xgap>[125X [27Xall3 := AllDerivations( X3 );;[127X[104X158[4X[25Xgap>[125X [27Ximall3 := ImagesList( all3 );; [127X[104X159[4X[25Xgap>[125X [27XPrintListOneItemPerLine( imall3 );[127X[104X160[4X[28X[ [ (), () ],[128X[104X161[4X[28X [ (), (1,3,2)(4,5,6) ],[128X[104X162[4X[28X [ (), (1,2,3)(4,6,5) ],[128X[104X163[4X[28X [ (1,3,2)(4,5,6), () ],[128X[104X164[4X[28X [ (1,3,2)(4,5,6), (1,3,2)(4,5,6) ],[128X[104X165[4X[28X [ (1,3,2)(4,5,6), (1,2,3)(4,6,5) ],[128X[104X166[4X[28X [ (1,2,3)(4,6,5), () ],[128X[104X167[4X[28X [ (1,2,3)(4,6,5), (1,3,2)(4,5,6) ],[128X[104X168[4X[28X [ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ][128X[104X169[4X[28X ][128X[104X170[4X[25Xgap>[125X [27XKnownAttributesOfObject( all3 );[127X[104X171[4X[28X[ "Object2d", "ImagesList", "AllOrRegular", "ImagesTable" ][128X[104X172[4X[25Xgap>[125X [27XPrintListOneItemPerLine( ImagesTable( all3 ) );[127X[104X173[4X[28X[ [ 1, 1, 1, 1, 1, 1 ],[128X[104X174[4X[28X [ 1, 1, 1, 3, 3, 3 ],[128X[104X175[4X[28X [ 1, 1, 1, 2, 2, 2 ],[128X[104X176[4X[28X [ 1, 3, 2, 1, 3, 2 ],[128X[104X177[4X[28X [ 1, 3, 2, 3, 2, 1 ],[128X[104X178[4X[28X [ 1, 3, 2, 2, 1, 3 ],[128X[104X179[4X[28X [ 1, 2, 3, 1, 2, 3 ],[128X[104X180[4X[28X [ 1, 2, 3, 3, 1, 2 ],[128X[104X181[4X[28X [ 1, 2, 3, 2, 3, 1 ][128X[104X182[4X[28X ][128X[104X183[4X[28X[128X[104X184[4X[32X[104X185186[1X5.2-2 CompositeDerivation[101X187188[29X[2XCompositeDerivation[102X( [3Xchi1[103X, [3Xchi2[103X ) [32X operation189[29X[2XUpImagePositions[102X( [3Xchi[103X ) [32X attribute190[29X[2XUpGeneratorImages[102X( [3Xchi[103X ) [32X attribute191[29X[2XCompositeSection[102X( [3Xxi1[103X, [3Xxi2[103X ) [32X operation192193[33X[0;0YThe Whitehead product [22Xχ_1 ⋆ χ_2[122X is implemented as194[10XCompositeDerivation(<chi1>,<chi2>)[110X. The composite of two sections is just195the composite of homomorphisms.[133X196197[4X[32X Example [32X[104X198[4X[28X[128X[104X199[4X[25Xgap>[125X [27Xreg3 := RegularDerivations( X3 );;[127X[104X200[4X[25Xgap>[125X [27Ximder3 := ImagesList( reg3 );; Length( imder3 );[127X[104X201[4X[28X6[128X[104X202[4X[25Xgap>[125X [27Xchi4 := DerivationByImages( X3, imder3[4] );[127X[104X203[4X[28XDerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ], [ (1,3,2)(4,5,6), () ] )[128X[104X204[4X[25Xgap>[125X [27Xchi5 := DerivationByImages( X3, imder3[5] );[127X[104X205[4X[28XDerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ], [128X[104X206[4X[28X[ (1,3,2)(4,5,6), (1,3,2)(4,5,6) ] )[128X[104X207[4X[25Xgap>[125X [27Xim4 := UpImagePositions( chi4 );[127X[104X208[4X[28X[ 1, 3, 2, 1, 3, 2 ][128X[104X209[4X[25Xgap>[125X [27Xim5 := UpImagePositions( chi5 );[127X[104X210[4X[28X[ 1, 3, 2, 3, 2, 1 ][128X[104X211[4X[25Xgap>[125X [27Xchi45 := chi4 * chi5;[127X[104X212[4X[28XDerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ], [ (), (1,3,2)(4,5,6) ] )[128X[104X213[4X[25Xgap>[125X [27Xim45 := UpImagePositions( chi45 );[127X[104X214[4X[28X[ 1, 1, 1, 3, 3, 3 ][128X[104X215[4X[25Xgap>[125X [27XPosition( imder3, UpGeneratorImages( chi45 ) );[127X[104X216[4X[28X2[128X[104X217[4X[28X[128X[104X218[4X[32X[104X219220[1X5.2-3 WhiteheadGroupTable[101X221222[29X[2XWhiteheadGroupTable[102X( [3XX0[103X ) [32X attribute223[29X[2XWhiteheadMonoidTable[102X( [3XX0[103X ) [32X attribute224[29X[2XWhiteheadPermGroup[102X( [3XX0[103X ) [32X attribute225[29X[2XWhiteheadTransMonoid[102X( [3XX0[103X ) [32X attribute226227[33X[0;0YMultiplication tables for the Whitehead group or monoid enable the228construction of permutation or transformation representations.[133X229230[4X[32X Example [32X[104X231[4X[28X[128X[104X232[4X[25Xgap>[125X [27Xwgt3 := WhiteheadGroupTable( X3 );; [127X[104X233[4X[25Xgap>[125X [27XPrintListOneItemPerLine( wgt3 );[127X[104X234[4X[28X[ [ 1, 2, 3, 4, 5, 6 ],[128X[104X235[4X[28X [ 2, 3, 1, 5, 6, 4 ],[128X[104X236[4X[28X [ 3, 1, 2, 6, 4, 5 ],[128X[104X237[4X[28X [ 4, 6, 5, 1, 3, 2 ],[128X[104X238[4X[28X [ 5, 4, 6, 2, 1, 3 ],[128X[104X239[4X[28X [ 6, 5, 4, 3, 2, 1 ][128X[104X240[4X[28X ][128X[104X241[4X[25Xgap>[125X [27Xwpg3 := WhiteheadPermGroup( X3 );[127X[104X242[4X[28XGroup([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])[128X[104X243[4X[25Xgap>[125X [27Xwmt3 := WhiteheadMonoidTable( X3 );; [127X[104X244[4X[25Xgap>[125X [27XPrintListOneItemPerLine( wmt3 );[127X[104X245[4X[28X[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],[128X[104X246[4X[28X [ 2, 3, 1, 5, 6, 4, 8, 9, 7 ],[128X[104X247[4X[28X [ 3, 1, 2, 6, 4, 5, 9, 7, 8 ],[128X[104X248[4X[28X [ 4, 6, 5, 1, 3, 2, 7, 9, 8 ],[128X[104X249[4X[28X [ 5, 4, 6, 2, 1, 3, 8, 7, 9 ],[128X[104X250[4X[28X [ 6, 5, 4, 3, 2, 1, 9, 8, 7 ],[128X[104X251[4X[28X [ 7, 7, 7, 7, 7, 7, 7, 7, 7 ],[128X[104X252[4X[28X [ 8, 8, 8, 8, 8, 8, 8, 8, 8 ],[128X[104X253[4X[28X [ 9, 9, 9, 9, 9, 9, 9, 9, 9 ][128X[104X254[4X[28X ][128X[104X255[4X[25Xgap>[125X [27Xwtm3 := WhiteheadTransMonoid( X3 );[127X[104X256[4X[28X<transformation monoid on 9 pts with 3 generators>[128X[104X257[4X[25Xgap>[125X [27XGeneratorsOfMonoid( wtm3 ); [127X[104X258[4X[28X[ Transformation( [ 2, 3, 1, 5, 6, 4, 8, 9, 7 ] ), [128X[104X259[4X[28X Transformation( [ 4, 6, 5, 1, 3, 2, 7, 9, 8 ] ), [128X[104X260[4X[28X Transformation( [ 7, 7, 7, 7, 7, 7, 7, 7, 7 ] ) ][128X[104X261[4X[28X[128X[104X262[4X[32X[104X263264265266