CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
6 Actors of 2d-groups
3
4
5
6.1 Actor of a crossed module
6
7
The actor of mathcalX is a crossed module (∆ : mathcalW(mathcalX) ->
8
Aut(mathcalX)) which was shown by Lue and Norrie, in [Nor87] and [Nor90] to
9
give the automorphism object of a crossed module mathcalX. In this
10
implementation, the source of the actor is a permutation representation W of
11
the Whitehead group of regular derivations, and the range of the actor is a
12
permutation representation A of the automorphism group Aut(mathcalX) of
13
mathcalX.
14
15
6.1-1 AutomorphismPermGroup
16
17
AutomorphismPermGroup( xmod )  attribute
18
GeneratingAutomorphisms( xmod )  attribute
19
PermAutomorphismAsXModMorphism( xmod, perm )  attribute
20
21
The automorphisms ( σ, ρ ) of mathcalX form a group Aut(mathcalX) of crossed
22
module isomorphisms. The function AutomorphismPermGroup finds a set of
23
GeneratingAutomorphisms for Aut(mathcalX), and then constructs a permutation
24
representation of this group, which is used as the range of the actor
25
crossed module of mathcalX. The individual automorphisms can be constructed
26
from the permutation group using the function
27
PermAutomorphismAsXModMorphism. The example below uses the crossed module
28
X3=[c3->s3] constructed in section 5.1.
29
30
 Example 
31

32
gap> APX3 := AutomorphismPermGroup( X3 );
33
Group([ (5,7,6), (1,2)(3,4)(6,7) ])
34
gap> Size( APX3 );
35
6
36
gap> genX3 := GeneratingAutomorphisms( X3 ); 
37
[ [[c3->s3] => [c3->s3]], [[c3->s3] => [c3->s3]] ]
38
gap> e6 := Elements( APX3 )[6];
39
(1,2)(3,4)(5,7)
40
gap> m6 := PermAutomorphismAsXModMorphism( X3, e6 );;
41
gap> Display( m6 );
42
Morphism of crossed modules :- 
43
: Source = [c3->s3] with generating sets:
44
 [ (1,2,3)(4,6,5) ]
45
 [ (4,5,6), (2,3)(5,6) ]
46
: Range = Source
47
: Source Homomorphism maps source generators to:
48
 [ (1,3,2)(4,5,6) ]
49
: Range Homomorphism maps range generators to:
50
 [ (4,6,5), (2,3)(4,5) ]
51

52

53
54
6.1-2 WhiteheadXMod
55
56
WhiteheadXMod( xmod )  attribute
57
LueXMod( xmod )  attribute
58
NorrieXMod( xmod )  attribute
59
ActorXMod( xmod )  attribute
60
AutomorphismPermGroup( xmod )  attribute
61
62
An automorphism ( σ, ρ ) of X acts on the Whitehead monoid by χ^(σ,ρ) = σ ∘
63
χ ∘ ρ^-1, and this determines the action for the actor. In fact the four
64
groups R, S, W, A, the homomorphisms between them, and the various actions,
65
give five crossed modules forming a crossed square:
66
67
 mathcalX = (∂ : S -> R),~ the initial crossed module, on the left,
68
69
 mathcalW(mathcalX) = (η : S -> W),~ the Whitehead crossed module of
70
mathcalX, at the top,
71
72
 mathcalN(X) = (α : R -> A),~ the Norrie crossed module of mathcalX, at
73
the bottom,
74
75
 Act(mathcalX) = ( ∆ : W -> A),~ the actor crossed module of mathcalX,
76
on the right, and
77
78
 mathcalL(mathcalX) = (∆∘η = α∘∂ : S -> A),~ the Lue crossed module of
79
mathcalX, along the top-left to bottom-right diagonal.
80
81
 Example 
82

83
gap> WGX3 := WhiteheadPermGroup( X3 );
84
Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])
85
gap> WX3 := WhiteheadXMod( X3 );; 
86
gap> Display( WX3 );
87
Crossed module Whitehead[c3->s3] :- 
88
: Source group has generators:
89
 [ (1,2,3)(4,6,5) ]
90
: Range group has generators:
91
 [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
92
: Boundary homomorphism maps source generators to:
93
 [ (1,2,3)(4,5,6) ]
94
: Action homomorphism maps range generators to automorphisms:
95
 (1,2,3)(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
96
 (1,4)(2,6)(3,5) --> { source gens --> [ (1,3,2)(4,5,6) ] }
97
 These 2 automorphisms generate the group of automorphisms.
98
gap> LX3 := LueXMod( X3 );;
99
gap> Display( LX3 );
100
Crossed module Lue[c3->s3] :- 
101
: Source group has generators:
102
 [ (1,2,3)(4,6,5) ]
103
: Range group has generators:
104
 [ (5,7,6), (1,2)(3,4)(6,7) ]
105
: Boundary homomorphism maps source generators to:
106
 [ (5,7,6) ]
107
: Action homomorphism maps range generators to automorphisms:
108
 (5,7,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
109
 (1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,5,6) ] }
110
 These 2 automorphisms generate the group of automorphisms.
111
gap> NX3 := NorrieXMod( X3 );; 
112
gap> Display( NX3 );
113
Crossed module Norrie[c3->s3] :- 
114
: Source group has generators:
115
 [ (4,5,6), (2,3)(5,6) ]
116
: Range group has generators:
117
 [ (5,7,6), (1,2)(3,4)(6,7) ]
118
: Boundary homomorphism maps source generators to:
119
 [ (5,6,7), (1,2)(3,4)(6,7) ]
120
: Action homomorphism maps range generators to automorphisms:
121
 (5,7,6) --> { source gens --> [ (4,5,6), (2,3)(4,5) ] }
122
 (1,2)(3,4)(6,7) --> { source gens --> [ (4,6,5), (2,3)(5,6) ] }
123
 These 2 automorphisms generate the group of automorphisms.
124
gap> AX3 := ActorXMod( X3 );; 
125
gap> Display( AX3);
126
Crossed module Actor[c3->s3] :- 
127
: Source group has generators:
128
 [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
129
: Range group has generators:
130
 [ (5,7,6), (1,2)(3,4)(6,7) ]
131
: Boundary homomorphism maps source generators to:
132
 [ (5,7,6), (1,2)(3,4)(6,7) ]
133
: Action homomorphism maps range generators to automorphisms:
134
 (5,7,6) --> { source gens --> [ (1,2,3)(4,5,6), (1,6)(2,5)(3,4) ] }
135
 (1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5), (1,4)(2,6)(3,5) ] }
136
 These 2 automorphisms generate the group of automorphisms.
137

138
gap> IAX3 := InnerActorXMod( X3 );; 
139
gap> Display( IAX3 );
140
Crossed module InnerActor[c3->s3] :- 
141
: Source group has generators:
142
 [ (1,2,3)(4,5,6) ]
143
: Range group has generators:
144
 [ (5,6,7), (1,2)(3,4)(6,7) ]
145
: Boundary homomorphism maps source generators to:
146
 [ (5,7,6) ]
147
: Action homomorphism maps range generators to automorphisms:
148
 (5,6,7) --> { source gens --> [ (1,2,3)(4,5,6) ] }
149
 (1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5) ] }
150
 These 2 automorphisms generate the group of automorphisms.
151

152

153
154
6.1-3 XModCentre
155
156
XModCentre( xmod )  attribute
157
InnerActorXMod( xmod )  attribute
158
InnerMorphism( xmod )  attribute
159
160
Pairs of boundaries or identity mappings provide six morphisms of crossed
161
modules. In particular, the boundaries of mathcalW(mathcalX) and
162
mathcalN(mathcalX) form the inner morphism of mathcalX, mapping source
163
elements to principal derivations and range elements to inner automorphisms.
164
The image of mathcalX under this morphism is the inner actor of mathcalX,
165
while the kernel is the centre of mathcalX. In the example which follows,
166
the inner morphism of X3=(c3->s3), from Chapter 5, is an inclusion of
167
crossed modules.
168
169
Note that we appear to have defined two sorts of centre for a crossed
170
module: XModCentre here, and CentreXMod (4.1-7) in the chapter on
171
isoclinism. We suspect that these two definitions give the same answer, but
172
this remains to be resolved.
173
174
 Example 
175

176
gap> IMX3 := InnerMorphism( X3 );; 
177
gap> Display( IMX3 );
178
Morphism of crossed modules :- 
179
: Source = [c3->s3] with generating sets:
180
 [ (1,2,3)(4,6,5) ]
181
 [ (4,5,6), (2,3)(5,6) ]
182
: Range = Actor[c3->s3] with generating sets:
183
 [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
184
 [ (5,7,6), (1,2)(3,4)(6,7) ]
185
: Source Homomorphism maps source generators to:
186
 [ (1,2,3)(4,5,6) ]
187
: Range Homomorphism maps range generators to:
188
 [ (5,6,7), (1,2)(3,4)(6,7) ]
189
gap> IsInjective( IMX3 );
190
true
191
gap> ZX3 := XModCentre( X3 ); 
192
[Group( () )->Group( () )]
193

194

195
196
197