Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X6 [33X[0;0YActors of 2d-groups[133X[101X234[1X6.1 [33X[0;0YActor of a crossed module[133X[101X56[33X[0;0YThe [13Xactor[113X of [22XmathcalX[122X is a crossed module [22X(∆ : mathcalW(mathcalX) ->7Aut(mathcalX))[122X which was shown by Lue and Norrie, in [Nor87] and [Nor90] to8give the automorphism object of a crossed module [22XmathcalX[122X. In this9implementation, the source of the actor is a permutation representation [22XW[122X of10the Whitehead group of regular derivations, and the range of the actor is a11permutation representation [22XA[122X of the automorphism group [22XAut(mathcalX)[122X of12[22XmathcalX[122X.[133X1314[1X6.1-1 AutomorphismPermGroup[101X1516[29X[2XAutomorphismPermGroup[102X( [3Xxmod[103X ) [32X attribute17[29X[2XGeneratingAutomorphisms[102X( [3Xxmod[103X ) [32X attribute18[29X[2XPermAutomorphismAsXModMorphism[102X( [3Xxmod[103X, [3Xperm[103X ) [32X attribute1920[33X[0;0YThe automorphisms [22X( σ, ρ )[122X of [22XmathcalX[122X form a group [22XAut(mathcalX)[122X of crossed21module isomorphisms. The function [10XAutomorphismPermGroup[110X finds a set of22[10XGeneratingAutomorphisms[110X for [22XAut(mathcalX)[122X, and then constructs a permutation23representation of this group, which is used as the range of the actor24crossed module of [22XmathcalX[122X. The individual automorphisms can be constructed25from the permutation group using the function26[10XPermAutomorphismAsXModMorphism[110X. The example below uses the crossed module27[10XX3=[c3->s3][110X constructed in section [14X5.1[114X.[133X2829[4X[32X Example [32X[104X30[4X[28X[128X[104X31[4X[25Xgap>[125X [27XAPX3 := AutomorphismPermGroup( X3 );[127X[104X32[4X[28XGroup([ (5,7,6), (1,2)(3,4)(6,7) ])[128X[104X33[4X[25Xgap>[125X [27XSize( APX3 );[127X[104X34[4X[28X6[128X[104X35[4X[25Xgap>[125X [27XgenX3 := GeneratingAutomorphisms( X3 ); [127X[104X36[4X[28X[ [[c3->s3] => [c3->s3]], [[c3->s3] => [c3->s3]] ][128X[104X37[4X[25Xgap>[125X [27Xe6 := Elements( APX3 )[6];[127X[104X38[4X[28X(1,2)(3,4)(5,7)[128X[104X39[4X[25Xgap>[125X [27Xm6 := PermAutomorphismAsXModMorphism( X3, e6 );;[127X[104X40[4X[25Xgap>[125X [27XDisplay( m6 );[127X[104X41[4X[28XMorphism of crossed modules :- [128X[104X42[4X[28X: Source = [c3->s3] with generating sets:[128X[104X43[4X[28X [ (1,2,3)(4,6,5) ][128X[104X44[4X[28X [ (4,5,6), (2,3)(5,6) ][128X[104X45[4X[28X: Range = Source[128X[104X46[4X[28X: Source Homomorphism maps source generators to:[128X[104X47[4X[28X [ (1,3,2)(4,5,6) ][128X[104X48[4X[28X: Range Homomorphism maps range generators to:[128X[104X49[4X[28X [ (4,6,5), (2,3)(4,5) ][128X[104X50[4X[28X[128X[104X51[4X[32X[104X5253[1X6.1-2 WhiteheadXMod[101X5455[29X[2XWhiteheadXMod[102X( [3Xxmod[103X ) [32X attribute56[29X[2XLueXMod[102X( [3Xxmod[103X ) [32X attribute57[29X[2XNorrieXMod[102X( [3Xxmod[103X ) [32X attribute58[29X[2XActorXMod[102X( [3Xxmod[103X ) [32X attribute59[29X[2XAutomorphismPermGroup[102X( [3Xxmod[103X ) [32X attribute6061[33X[0;0YAn automorphism [22X( σ, ρ )[122X of [10XX[110X acts on the Whitehead monoid by [22Xχ^(σ,ρ) = σ ∘62χ ∘ ρ^-1[122X, and this determines the action for the actor. In fact the four63groups [22XR, S, W, A[122X, the homomorphisms between them, and the various actions,64give five crossed modules forming a [13Xcrossed square[113X:[133X6566[30X [33X[0;6Y[22XmathcalX = (∂ : S -> R),~[122X the initial crossed module, on the left,[133X6768[30X [33X[0;6Y[22XmathcalW(mathcalX) = (η : S -> W),~[122X the Whitehead crossed module of69[22XmathcalX[122X, at the top,[133X7071[30X [33X[0;6Y[22XmathcalN(X) = (α : R -> A),~[122X the Norrie crossed module of [22XmathcalX[122X, at72the bottom,[133X7374[30X [33X[0;6Y[22XAct(mathcalX) = ( ∆ : W -> A),~[122X the actor crossed module of [22XmathcalX[122X,75on the right, and[133X7677[30X [33X[0;6Y[22XmathcalL(mathcalX) = (∆∘η = α∘∂ : S -> A),~[122X the Lue crossed module of78[22XmathcalX[122X, along the top-left to bottom-right diagonal.[133X7980[4X[32X Example [32X[104X81[4X[28X[128X[104X82[4X[25Xgap>[125X [27XWGX3 := WhiteheadPermGroup( X3 );[127X[104X83[4X[28XGroup([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])[128X[104X84[4X[25Xgap>[125X [27XWX3 := WhiteheadXMod( X3 );; [127X[104X85[4X[25Xgap>[125X [27XDisplay( WX3 );[127X[104X86[4X[28XCrossed module Whitehead[c3->s3] :- [128X[104X87[4X[28X: Source group has generators:[128X[104X88[4X[28X [ (1,2,3)(4,6,5) ][128X[104X89[4X[28X: Range group has generators:[128X[104X90[4X[28X [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ][128X[104X91[4X[28X: Boundary homomorphism maps source generators to:[128X[104X92[4X[28X [ (1,2,3)(4,5,6) ][128X[104X93[4X[28X: Action homomorphism maps range generators to automorphisms:[128X[104X94[4X[28X (1,2,3)(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }[128X[104X95[4X[28X (1,4)(2,6)(3,5) --> { source gens --> [ (1,3,2)(4,5,6) ] }[128X[104X96[4X[28X These 2 automorphisms generate the group of automorphisms.[128X[104X97[4X[25Xgap>[125X [27XLX3 := LueXMod( X3 );;[127X[104X98[4X[25Xgap>[125X [27XDisplay( LX3 );[127X[104X99[4X[28XCrossed module Lue[c3->s3] :- [128X[104X100[4X[28X: Source group has generators:[128X[104X101[4X[28X [ (1,2,3)(4,6,5) ][128X[104X102[4X[28X: Range group has generators:[128X[104X103[4X[28X [ (5,7,6), (1,2)(3,4)(6,7) ][128X[104X104[4X[28X: Boundary homomorphism maps source generators to:[128X[104X105[4X[28X [ (5,7,6) ][128X[104X106[4X[28X: Action homomorphism maps range generators to automorphisms:[128X[104X107[4X[28X (5,7,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }[128X[104X108[4X[28X (1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,5,6) ] }[128X[104X109[4X[28X These 2 automorphisms generate the group of automorphisms.[128X[104X110[4X[25Xgap>[125X [27XNX3 := NorrieXMod( X3 );; [127X[104X111[4X[25Xgap>[125X [27XDisplay( NX3 );[127X[104X112[4X[28XCrossed module Norrie[c3->s3] :- [128X[104X113[4X[28X: Source group has generators:[128X[104X114[4X[28X [ (4,5,6), (2,3)(5,6) ][128X[104X115[4X[28X: Range group has generators:[128X[104X116[4X[28X [ (5,7,6), (1,2)(3,4)(6,7) ][128X[104X117[4X[28X: Boundary homomorphism maps source generators to:[128X[104X118[4X[28X [ (5,6,7), (1,2)(3,4)(6,7) ][128X[104X119[4X[28X: Action homomorphism maps range generators to automorphisms:[128X[104X120[4X[28X (5,7,6) --> { source gens --> [ (4,5,6), (2,3)(4,5) ] }[128X[104X121[4X[28X (1,2)(3,4)(6,7) --> { source gens --> [ (4,6,5), (2,3)(5,6) ] }[128X[104X122[4X[28X These 2 automorphisms generate the group of automorphisms.[128X[104X123[4X[25Xgap>[125X [27XAX3 := ActorXMod( X3 );; [127X[104X124[4X[25Xgap>[125X [27XDisplay( AX3);[127X[104X125[4X[28XCrossed module Actor[c3->s3] :- [128X[104X126[4X[28X: Source group has generators:[128X[104X127[4X[28X [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ][128X[104X128[4X[28X: Range group has generators:[128X[104X129[4X[28X [ (5,7,6), (1,2)(3,4)(6,7) ][128X[104X130[4X[28X: Boundary homomorphism maps source generators to:[128X[104X131[4X[28X [ (5,7,6), (1,2)(3,4)(6,7) ][128X[104X132[4X[28X: Action homomorphism maps range generators to automorphisms:[128X[104X133[4X[28X (5,7,6) --> { source gens --> [ (1,2,3)(4,5,6), (1,6)(2,5)(3,4) ] }[128X[104X134[4X[28X (1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5), (1,4)(2,6)(3,5) ] }[128X[104X135[4X[28X These 2 automorphisms generate the group of automorphisms.[128X[104X136[4X[28X[128X[104X137[4X[25Xgap>[125X [27XIAX3 := InnerActorXMod( X3 );; [127X[104X138[4X[25Xgap>[125X [27XDisplay( IAX3 );[127X[104X139[4X[28XCrossed module InnerActor[c3->s3] :- [128X[104X140[4X[28X: Source group has generators:[128X[104X141[4X[28X [ (1,2,3)(4,5,6) ][128X[104X142[4X[28X: Range group has generators:[128X[104X143[4X[28X [ (5,6,7), (1,2)(3,4)(6,7) ][128X[104X144[4X[28X: Boundary homomorphism maps source generators to:[128X[104X145[4X[28X [ (5,7,6) ][128X[104X146[4X[28X: Action homomorphism maps range generators to automorphisms:[128X[104X147[4X[28X (5,6,7) --> { source gens --> [ (1,2,3)(4,5,6) ] }[128X[104X148[4X[28X (1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5) ] }[128X[104X149[4X[28X These 2 automorphisms generate the group of automorphisms.[128X[104X150[4X[28X[128X[104X151[4X[32X[104X152153[1X6.1-3 XModCentre[101X154155[29X[2XXModCentre[102X( [3Xxmod[103X ) [32X attribute156[29X[2XInnerActorXMod[102X( [3Xxmod[103X ) [32X attribute157[29X[2XInnerMorphism[102X( [3Xxmod[103X ) [32X attribute158159[33X[0;0YPairs of boundaries or identity mappings provide six morphisms of crossed160modules. In particular, the boundaries of [22XmathcalW(mathcalX)[122X and161[22XmathcalN(mathcalX)[122X form the [13Xinner morphism[113X of [22XmathcalX[122X, mapping source162elements to principal derivations and range elements to inner automorphisms.163The image of [22XmathcalX[122X under this morphism is the [13Xinner actor[113X of [22XmathcalX[122X,164while the kernel is the [13Xcentre[113X of [22XmathcalX[122X. In the example which follows,165the inner morphism of [10XX3=(c3->s3)[110X, from Chapter [14X5[114X, is an inclusion of166crossed modules.[133X167168[33X[0;0YNote that we appear to have defined [13Xtwo[113X sorts of [13Xcentre[113X for a crossed169module: [10XXModCentre[110X here, and [2XCentreXMod[102X ([14X4.1-7[114X) in the chapter on170isoclinism. We suspect that these two definitions give the same answer, but171this remains to be resolved.[133X172173[4X[32X Example [32X[104X174[4X[28X[128X[104X175[4X[25Xgap>[125X [27XIMX3 := InnerMorphism( X3 );; [127X[104X176[4X[25Xgap>[125X [27XDisplay( IMX3 );[127X[104X177[4X[28XMorphism of crossed modules :- [128X[104X178[4X[28X: Source = [c3->s3] with generating sets:[128X[104X179[4X[28X [ (1,2,3)(4,6,5) ][128X[104X180[4X[28X [ (4,5,6), (2,3)(5,6) ][128X[104X181[4X[28X: Range = Actor[c3->s3] with generating sets:[128X[104X182[4X[28X [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ][128X[104X183[4X[28X [ (5,7,6), (1,2)(3,4)(6,7) ][128X[104X184[4X[28X: Source Homomorphism maps source generators to:[128X[104X185[4X[28X [ (1,2,3)(4,5,6) ][128X[104X186[4X[28X: Range Homomorphism maps range generators to:[128X[104X187[4X[28X [ (5,6,7), (1,2)(3,4)(6,7) ][128X[104X188[4X[25Xgap>[125X [27XIsInjective( IMX3 );[127X[104X189[4X[28Xtrue[128X[104X190[4X[25Xgap>[125X [27XZX3 := XModCentre( X3 ); [127X[104X191[4X[28X[Group( () )->Group( () )][128X[104X192[4X[28X[128X[104X193[4X[32X[104X194195196197