CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
8 3d-groups and 3d-mappings : crossed squares and cat^2-groups
3
4
The term 3d-group refers to a set of equivalent categories of which the most
5
common are the categories of crossed squares and cat^2-groups.
6
7
8
8.1 Definition of a crossed square and a crossed n-cube of groups
9
10
Crossed squares were introduced by Guin-Waléry and Loday (see, for example,
11
[BL87]) as fundamental crossed squares of commutative squares of spaces, but
12
are also of purely algebraic interest. We denote by [n] the set {1,2,...,n}.
13
We use the n=2 version of the definition of crossed n-cube as given by Ellis
14
and Steiner [ES87].
15
16
A crossed square mathcalS consists of the following:
17
18
 groups S_J for each of the four subsets J ⊆ [2];
19
20
 a commutative diagram of group homomorphisms:
21
22
23
 \ddot{\partial}_1 : S_{[2]} \to S_{\{2\}}, \quad \ddot{\partial}_2 :
24
S_{[2]} \to S_{\{1\}}, \quad \dot{\partial}_1 : S_{\{1\}} \to
25
S_{\emptyset}, \quad \dot{\partial}_2 : S_{\{2\}} \to S_{\emptyset};
26
27

28
29
 actions of S_∅ on S_{1}, S_{2} and S_[2] which determine actions of
30
S_{1} on S_{2} and S_[2] via dot∂_1 and actions of S_{2} on S_{1} and
31
S_[2] via dot∂_2;
32
33
 a function ⊠ : S_{1} × S_{2} -> S_[2].
34
35
Here is a picture of the situation:
36
37
38
\vcenter{\xymatrix{ & & S_{[2]} \ar[rr]^{\ddot{\partial}_1}
39
\ar[dd]_{\ddot{\partial}_2} && S_{\{2\}} \ar[dd]^{\dot{\partial}_2} & \\
40
\mathcal{S} & = & && \\ & & S_{\{1\}} \ar[rr]_{\dot{\partial}_1} &&
41
S_{\emptyset} }} }}
42
43

44
45
The following axioms must be satisfied for all l ∈ S_[2], m,m_1,m_2 ∈ S_{1},
46
n,n_1,n_2 ∈ S_{2}, p ∈ S_∅:
47
48
 the homomorphisms ddot∂_1, ddot∂_2 preserve the action of S_∅;
49
50
 each of the upper, left-hand, lower, and right-hand sides of the
51
square,
52
53
54
 \ddot{\mathcal{S}}_1 = (\ddot{\partial}_1 : S_{[2]} \to S_{\{2\}}),
55
\ddot{\mathcal{S}}_2 = (\ddot{\partial}_2 : S_{[2]} \to S_{\{1\}}),
56
\dot{\mathcal{S}}_1 = (\dot{\partial}_1 : S_{\{1\}} \to
57
S_{\emptyset}), \dot{\mathcal{S}}_2 = (\dot{\partial}_2 : S_{\{2\}}
58
\to S_{\emptyset}),
59
60

61
62
and the diagonal
63
64
65
 \mathcal{S}_{12} = (\partial_{12} := \dot{\partial}_1\ddot{\partial}_2
66
= \dot{\partial}_2\ddot{\partial}_1 : S_{[2]} \to S_{\emptyset})
67
68

69
70
are crossed modules (with actions via S_∅);
71
72
 ⊠ is a crossed pairing:
73
74
 (m_1m_2 ⊠ n) = (m_1 ⊠ n)^m_2 (m_2 ⊠ n),
75
76
 (m ⊠ n_1n_2) = (m ⊠ n_2) (m ⊠ n_1)^n_2,
77
78
 (m ⊠ n)^p = (m^p ⊠ n^p);
79
80
 ddot∂_1 (m ⊠ n) = (n^-1)^m n quad mboxand quad ddot∂_2 (m ⊠ n) = m^-1
81
m^n,
82
83
 (m ⊠ ddot∂_1 l) = (l^-1)^m l quad mboxand quad (ddot∂_2 l ⊠ n) = l^-1
84
l^n.
85
86
Note that the actions of S_{1} on S_{2} and S_{2} on S_{1} via S_∅ are
87
compatible since
88
89
90
{m_1}^{(n^m)} \;=\; {m_1}^{\dot{\partial}_2(n^m)} \;=\;
91
{m_1}^{m^{-1}(\dot{\partial}_2 n)m} \;=\; (({m_1}^{m^{-1}})^n)^m.
92
93

94
95
(A precrossed square is a similar structure which satisfies some subset of
96
these axioms. [More needed here.])
97
98
In what follows we shall generally use the following notation for the S_J,
99
namely L = S_[2];~ M = S_{1};~ N = S_{2} and P = S_∅.
100
101
Crossed squares are the n=2 case of a crossed n-cube of groups, defined as
102
follows. (This is an attempt to translate Definition 2.1 in Ronnie's
103
Computing homotopy types using crossed n-cubes of groups into right actions
104
-- but this definition is not yet completely understood!)
105
106
A crossed n-cube of groups consists of the following:
107
108
 groups S_A for every subset A ⊆ [n];
109
110
 a commutative diagram of group homomorphisms ∂_i : S_A -> S_A ∖ {i}, i
111
∈ [n]; with composites ∂_B : S_A -> S_A ∖ B, B ⊆ [n];
112
113
 actions of S_∅ on each S_A; and hence actions of S_B on S_A via ∂_B
114
for each B ⊆ [n];
115
116
 functions ⊠_A,B : S_A × S_B -> S_A ∪ B, (A,B ⊆ [n]).
117
118
The following axioms must be satisfied (long list to be added).
119
120
121
8.2 Constructions for crossed squares
122
123
Analogously to the data structure used for crossed modules, crossed squares
124
are implemented as 3d-groups. When times allows, cat^2-groups will also be
125
implemented, with conversion between the two types of structure. Some
126
standard constructions of crossed squares are listed below. At present, a
127
limited number of constructions are implemented. Morphisms of crossed
128
squares have also been implemented, though there is a lot still to be done.
129
130
8.2-1 CrossedSquare
131
132
CrossedSquare( args )  function
133
CrossedSquareByNormalSubgroups( P, N, M, L )  operation
134
ActorCrossedSquare( X0 )  operation
135
Transpose3dGroup( S0 )  attribute
136
Name( S0 )  attribute
137
138
Here are some standard examples of crossed squares.
139
140
 If M, N are normal subgroups of a group P, and L = M ∩ N, then the
141
four inclusions, L -> N,~ L -> M,~ M -> P,~ N -> P, together with the
142
actions of P on M, N and L given by conjugation, form a crossed square
143
with crossed pairing
144
145
146
 \boxtimes \;:\; M \times N \to M\cap N, \quad (m,n) \mapsto [m,n]
147
\,=\, m^{-1}n^{-1}mn \,=\,(n^{-1})^mn \,=\, m^{-1}m^n\,.
148
149

150
151
This construction is implemented as
152
CrossedSquareByNormalSubgroups(P,N,M,L);.
153
154
 The actor mathcalA(mathcalX_0) of a crossed module mathcalX_0 has been
155
described in Chapter 5. The crossed pairing is given by
156
157
158
 \boxtimes \;:\; R \times W \,\to\, S, \quad (r,\chi) \,\mapsto\, \chi
159
r~.
160
161

162
163
This is implemented as ActorCrossedSquare( X0 );.
164
165
 The transpose of mathcalS is the crossed square tildemathcalS}
166
obtained by interchanging S_{1} with S_{2}, ddot∂_1 with ddot∂_2, and
167
dot∂_1 with dot∂_2. The crossed pairing is given by
168
169
170
 \tilde{\boxtimes} \;:\; S_{\{2\}} \times S_{\{1\}} \to S_{[2]}, \quad
171
(n,m) \;\mapsto\; n\,\tilde{\boxtimes}\,m := (m \boxtimes n)^{-1}~.
172
173

174
175
 Example 
176

177
gap> d20 := DihedralGroup( IsPermGroup, 20 );;
178
gap> gend20 := GeneratorsOfGroup( d20 ); 
179
[ (1,2,3,4,5,6,7,8,9,10), (2,10)(3,9)(4,8)(5,7) ]
180
gap> p1 := gend20[1];; p2 := gend20[2];; p12 := p1*p2; 
181
(1,10)(2,9)(3,8)(4,7)(5,6)
182
gap> d10a := Subgroup( d20, [ p1^2, p2 ] );;
183
gap> d10b := Subgroup( d20, [ p1^2, p12 ] );;
184
gap> c5d := Subgroup( d20, [ p1^2 ] );;
185
gap> SetName( d20, "d20" ); SetName( d10a, "d10a" ); 
186
gap> SetName( d10b, "d10b" ); SetName( c5d, "c5d" ); 
187
gap> XSconj := CrossedSquareByNormalSubgroups( d20, d10b, d10a, c5d );
188
[ c5d -> d10b ]
189
[ | | ]
190
[ d10a -> d20 ]
191

192
gap> Name( XSconj );
193
"[c5d->d10b,d10a->d20]"
194
gap> XStrans := Transpose3dGroup( XSconj ); 
195
[ c5d -> d10a ]
196
[ | | ]
197
[ d10b -> d20 ]
198

199
gap> X20 := XModByNormalSubgroup( d20, d10a );
200
[d10a->d20]
201
gap> XSact := ActorCrossedSquare( X20 );
202
crossed square with:
203
 up = Whitehead[d10a->d20]
204
 left = [d10a->d20]
205
 down = Norrie[d10a->d20]
206
 right = Actor[d10a->d20]
207

208

209
210
8.2-2 CentralQuotient
211
212
CentralQuotient( X0 )  attribute
213
214
The central quotient of a crossed module mathcalX = (∂ : S -> R) is the
215
crossed square where:
216
217
 the left crossed module is mathcalX;
218
219
 the right crossed module is the quotient mathcalX/Z(mathcalX) (see
220
CentreXMod (4.1-7));
221
222
 the top and bottom homomorphisms are the natural homomorphisms onto
223
the quotient groups;
224
225
 the crossed pairing ⊠ : (R × F) -> S, where F = Fix(mathcalX,S,R), is
226
the displacement element ⊠(r,Fs) = ⟨ r,s ⟩ = (s^-1)^rsquad (see
227
Displacement (4.1-3) and section 4.3).
228
229
This is the special case of an intended function
230
CrossedSquareByCentralExtension which has not yet been implemented. In the
231
example Xn7 ⊴ X24, constructed in section 4.1.
232
233
 Example 
234

235
gap> pos7 := Position( ids, [ [12,2], [24,5] ] );;
236
gap> Xn7 := nsx[pos7]; 
237
[Group( [ f2, f3, f4 ] )->Group( [ f1, f2, f4, f5 ] )]
238
gap> IdGroup( CentreXMod(Xn7) ); 
239
[ [ 4, 1 ], [ 4, 1 ] ]
240
gap> CQXn7 := CentralQuotient( Xn7 );
241
crossed square with:
242
 up = [Group( [ f2, f3, f4 ] )->Group( [ f1 ] )]
243
 left = [Group( [ f2, f3, f4 ] )->Group( [ f1, f2, f4, f5 ] )]
244
 down = [Group( [ f1, f2, f4, f5 ] )->Group( [ f1, f2 ] )]
245
 right = [Group( [ f1 ] )->Group( [ f1, f2 ] )]
246

247
gap> IdGroup( CQXn7 );
248
[ [ [ 12, 2 ], [ 3, 1 ] ], [ [ 24, 5 ], [ 6, 1 ] ] ]
249

250

251
252
8.2-3 IsCrossedSquare
253
254
IsCrossedSquare( obj )  property
255
Is3dObject( obj )  property
256
IsPerm3dObject( obj )  property
257
IsPc3dObject( obj )  property
258
IsFp3dObject( obj )  property
259
IsPreCrossedSquare( obj )  property
260
261
These are the basic properties for 3d-groups, and crossed squares in
262
particular.
263
264
8.2-4 Up2DimensionalGroup
265
266
Up2DimensionalGroup( XS )  attribute
267
Left2DimensionalGroup( XS )  attribute
268
Down2DimensionalGroup( XS )  attribute
269
Right2DimensionalGroup( XS )  attribute
270
DiagonalAction( XS )  attribute
271
CrossedPairing( XS )  attribute
272
ImageElmCrossedPairing( XS, pair )  operation
273
274
In this implementation the attributes used in the construction of a crossed
275
square XS are the four crossed modules (2d-groups) on the sides of the
276
square (up; down, left; and right); the diagonal action of P on L; and the
277
crossed pairing.
278
279
The GAP development team have suggested that crossed pairings should be
280
implemented as a special case of BinaryMappings -- a structure which does
281
not yet exist in GAP. As a temporary measure, crossed pairings have been
282
implemented using Mapping2ArgumentsByFunction.
283
284
 Example 
285

286
gap> Up2DimensionalGroup( XSconj );
287
[c5d->d10b]
288
gap> Right2DimensionalGroup( XSact );
289
Actor[d10a->d20]
290
gap> xpconj := CrossedPairing( XSconj );;
291
gap> ImageElmCrossedPairing( xpconj, [ p2, p12 ] );
292
(1,9,7,5,3)(2,10,8,6,4)
293
gap> diag := DiagonalAction( XSact );
294
[ (1,3,5,2,4)(6,10,14,8,12)(7,11,15,9,13), (1,2,5,4)(6,8,14,12)(7,11,13,9) 
295
 ] -> 
296
[ (1,3,5,2,4)(6,10,14,8,12)(7,11,15,9,13), (1,2,5,4)(6,8,14,12)(7,11,13,9) 
297
 ] -> [ ^(1,3,5,7,9)(2,4,6,8,10), ^(1,2,5,4)(3,8)(6,7,10,9) ]
298

299

300
301
302
8.3 Morphisms of crossed squares
303
304
This section describes an initial implementation of morphisms of
305
(pre-)crossed squares.
306
307
8.3-1 Source
308
309
Source( map )  attribute
310
Range( map )  attribute
311
Up2DimensionalMorphism( map )  attribute
312
Left2DimensionalMorphism( map )  attribute
313
Down2DimensionalMorphism( map )  attribute
314
Right2DimensionalMorphism( map )  attribute
315
316
Morphisms of 3dObjects are implemented as 3dMappings. These have a pair of
317
3d-groups as source and range, together with four 2d-morphisms mapping
318
between the four pairs of crossed modules on the four sides of the squares.
319
These functions return fail when invalid data is supplied.
320
321
8.3-2 IsCrossedSquareMorphism
322
323
IsCrossedSquareMorphism( map )  property
324
IsPreCrossedSquareMorphism( map )  property
325
IsBijective( mor )  property
326
IsEndomorphism3dObject( mor )  property
327
IsAutomorphism3dObject( mor )  property
328
329
A morphism mor between two pre-crossed squares mathcalS_1 and mathcalS_2
330
consists of four crossed module morphisms Up2DimensionalMorphism(mor),
331
mapping the Up2DimensionalGroup of mathcalS_1 to that of mathcalS_2,
332
Left2DimensionalMorphism(mor), Down2DimensionalMorphism(mor) and
333
Right2DimensionalMorphism(mor). These four morphisms are required to commute
334
with the four boundary maps and to preserve the rest of the structure. The
335
current version of IsCrossedSquareMorphism does not perform all the required
336
checks.
337
338
 Example 
339

340
gap> ad20 := GroupHomomorphismByImages( d20, d20, [p1,p2], [p1,p2^p1] );;
341
gap> ad10a := GroupHomomorphismByImages( d10a, d10a, [p1^2,p2], [p1^2,p2^p1] );;
342
gap> ad10b := GroupHomomorphismByImages( d10b, d10b, [p1^2,p12], [p1^2,p12^p1] );;
343
gap> idc5d := IdentityMapping( c5d );;
344
gap> upconj := Up2DimensionalGroup( XSconj );;
345
gap> leftconj := Left2DimensionalGroup( XSconj );; 
346
gap> downconj := Down2DimensionalGroup( XSconj );; 
347
gap> rightconj := Right2DimensionalGroup( XSconj );; 
348
gap> up := XModMorphismByHoms( upconj, upconj, idc5d, ad10b );
349
[[c5d->d10b] => [c5d->d10b]]
350
gap> left := XModMorphismByHoms( leftconj, leftconj, idc5d, ad10a );
351
[[c5d->d10a] => [c5d->d10a]]
352
gap> down := XModMorphismByHoms( downconj, downconj, ad10a, ad20 );
353
[[d10a->d20] => [d10a->d20]]
354
gap> right := XModMorphismByHoms( rightconj, rightconj, ad10b, ad20 );
355
[[d10b->d20] => [d10b->d20]]
356
gap> autoconj := CrossedSquareMorphism( XSconj, XSconj, up, left, right, down );; 
357
gap> ord := Order( autoconj );;
358
gap> Display( autoconj );
359
Morphism of crossed squares :- 
360
: Source = [c5d->d10b,d10a->d20]
361
: Range = [c5d->d10b,d10a->d20]
362
: order = 5
363
: up-left: [ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10) ], 
364
 [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10) ] ]
365
: up-right: 
366
[ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6) ], 
367
 [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1, 2)( 3,10)( 4, 9)( 5, 8)( 6, 7) ] ]
368
: down-left: 
369
[ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 2,10)( 3, 9)( 4, 8)( 5, 7) ], 
370
 [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1, 3)( 4,10)( 5, 9)( 6, 8) ] ]
371
: down-right: 
372
[ [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10), ( 2,10)( 3, 9)( 4, 8)( 5, 7) ], 
373
 [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10), ( 1, 3)( 4,10)( 5, 9)( 6, 8) ] ]
374
gap> IsAutomorphismHigherDimensionalDomain( autoconj );
375
true
376
gap> KnownPropertiesOfObject( autoconj );
377
[ "CanEasilyCompareElements", "CanEasilySortElements", "IsTotal", 
378
 "IsSingleValued", "IsInjective", "IsSurjective", 
379
 "IsPreCrossedSquareMorphism", "IsCrossedSquareMorphism", 
380
 "IsEndomorphismHigherDimensionalDomain", 
381
 "IsAutomorphismHigherDimensionalDomain" ]
382

383

384
385
386
8.4 Definitions and constructions for cat^2-groups and their morphisms
387
388
We shall give three definitions of cat^2-groups and show that they are
389
equivalent. When we come to define cat^n-groups we shall give a similar set
390
of three definitions.
391
392
Firstly, we take the definition of a cat^2-group from Section 5 of Brown and
393
Loday [BL87], suitably modified. A cat^2-group mathcalC =
394
(C_[2],C_{2},C_{1},C_∅) comprises four groups (one for each of the subsets
395
of [2]) and 15 homomorphisms, as shown in the following diagram:
396
397
398
\vcenter{\xymatrix{ & C_{[2]} \ar[ddd] <-1.2ex> \ar[ddd]
399
<-2.0ex>_{\ddot{t}_2,\ddot{h}_2} \ar[rrr] <+1.2ex> \ar[rrr]
400
<+2.0ex>^{\ddot{t}_1,\ddot{h}_1} \ar[dddrrr] <-0.2ex> \ar[dddrrr]
401
<-1.0ex>_(0.55){t_{[2]},h_{[2]}} &&& C_{\{2\}} \ar[lll]^{\ddot{e}_1}
402
\ar[ddd]<+1.2ex> \ar[ddd] <+2.0ex>^{\dot{t}_2,\dot{h}_2} \\ \mathcal{C}
403
\quad = \quad & &&& \\ & &&& \\ & C_{\{1\}} \ar[uuu]_{\ddot{e}_2} \ar[rrr]
404
<-1.2ex> \ar[rrr] <-2.0ex>_{\dot{t}_1,\dot{h}_1} &&& C_{\emptyset}
405
\ar[uuu]^{\dot{e}_2} \ar[lll]_{\dot{e}_1} \ar[uuulll] <-1.0ex>_{e_{[2]}} \\
406
}}
407
408

409
410
The following axioms are satisfied by these homomorphisms:
411
412
 the four sides of the square are cat^1-groups, denoted
413
ddotmathcalC}_1, ddotmathcalC}_2, dotmathcalC}_1, dotmathcalC}_2,
414
415
 dott_1∘ddoth_2 = doth_2∘ddott_1, ~ dott_2∘ddoth_1 = doth_1∘ddott_2, ~
416
dote_1∘dott_2 = ddott_2∘ddote_1, ~ dote_2∘dott_1 = ddott_1∘ddote_2, ~
417
dote_1∘doth_2 = ddoth_2∘ddote_1, ~ dote_2∘doth_1 = ddoth_1∘ddote_2,
418
419
 dott_1∘ddott_2 = dott_2∘ddott_1 = t_[2], ~ doth_1∘ddoth_2 =
420
doth_2∘ddoth_1 = h_[2], ~ dote_1∘ddote_2 = dote_2∘ddote_1 = e_[2],
421
making the diagonal a cat^1-group (e_[2]; t_[2], h_[2] : C_[2] ->
422
C_∅).
423
424
It follows from these identities that (ddott_1,dott_1),(ddoth_1,doth_1) and
425
(ddote_1,dote_1) are morphisms of cat^1-groups.
426
427
Secondly, we give the simplest of the three definitions, adapted from
428
Ellis-Steiner [ES87]. A cat^2-group mathcalC consists of groups G, R_1,R_2
429
and six homomorphisms t_1,h_1 : G -> R_2,~ e_1 : R_2 -> G,~ t_2,h_2 : G ->
430
R_1,~ e_2 : R_1 -> G, satisfying the following axioms for all 1 leqslant i
431
leqslant 2,
432
433
 (t_i ∘ e_i)r = r,~ (h_i ∘ e_i)r = r,~ ∀ r ∈ R_[2] ∖ {i}, quad [ker
434
t_i, ker h_i] = 1,
435
436
 (e_1 ∘ t_1) ∘ (e_2 ∘ t_2) = (e_2 ∘ t_2) ∘ (e_1 ∘ t_1), quad (e_1 ∘
437
h_1) ∘ (e_2 ∘ h_2) = (e_2 ∘ h_2) ∘ (e_1 ∘ h_1),
438
439
 (e_1 ∘ t_1) ∘ (e_2 ∘ h_2) = (e_2 ∘ h_2) ∘ (e_1 ∘ t_1), quad (e_2 ∘
440
t_2) ∘ (e_1 ∘ h_1) = (e_1 ∘ h_1) ∘ (e_2 ∘ t_2).
441
442
Our third definition defines a cat^2-group as a "cat^1-group of
443
cat^1-groups". A cat^2-group mathcalC consists of two cat^1-groups
444
mathcalC_1 = (e_1;t_1,h_1 : G_1 -> R_1) and mathcalC_2 = (e_2;t_2,h_2 : G_2
445
-> R_2) and cat^1-morphisms t = (ddott,dott), h = (ddoth,doth) : mathcalC_1
446
-> mathcalC_2, e = (ddote,dote) : mathcalC_2 -> mathcalC_1, subject to the
447
following conditions:
448
449
450
(t \circ e) ~\mbox{and}~ (h \circ e) ~\mbox{are the identity mapping on}~
451
\mathcal{C}_2, \qquad [\ker t, \ker h] = \{ 1_{\mathcal{C}_1} \},
452
453

454
455
where ker t = (ker ddott, ker dott), and similarly for ker h.
456
457
8.4-1 Cat2Group
458
459
Cat2Group( args )  function
460
PreCat2Group( args )  function
461
PreCat2GroupByPreCat1Groups( L )  operation
462
463
The global functions Cat2Group and PreCat2Group are normally called with a
464
single argument, a list of cat1-groups.
465
466
 Example 
467

468
gap> CC6 := Cat2Group( Cat1Group(6,2,2), Cat1Group(6,2,3) );
469
generating (pre-)cat1-groups:
470
1 : [C6=>Group( [ f1 ] )]
471
2 : [C6=>Group( [ f2 ] )]
472

473
gap> IsCat2Group( CC6 );
474
true
475

476

477
478
8.4-2 Cat2GroupOfCrossedSquare
479
480
Cat2GroupOfCrossedSquare( xsq )  attribute
481
CrossedSquareOfCat2Group( CC )  attribute
482
483
These functions are very experimental, and should not be relied on!
484
485
These functions provide the conversion from crossed square to cat2-group,
486
and conversely. (They are the 3-dimensional equivalents of Cat1GroupOfXMod
487
and XModOfCat1Group.)
488
489
 Example 
490

491
gap> xsCC6 := CrossedSquareOfCat2Group( CC6 );
492
crossed square with:
493
 up = [Group( () )->Group( [ (1,2) ] )]
494
 left = [Group( () )->Group( [ (), (3,4,5) ] )]
495
 down = [Group( [ (), (3,4,5) ] ) -> Group( () )]
496
 right = [Group( [ (1,2) ] ) -> Group( () )]
497
gap> Cat2GroupOfCrossedSquare( XSact );
498
Warning: these conversion functions are still under development
499
fail
500

501

502
503
504
8.5 Definition and constructions for cat^n-groups and their morphisms
505
506
In this chapter we are interested in cat^2-groups, but it is convenient in
507
this section to give the more general definition. There are three equivalent
508
description of a cat^n-group.
509
510
A cat^n-group consists of the following.
511
512
 2^n groups G_A, one for each subset A of [n], the vertices of an
513
n-cube.
514
515
 Group homomorphisms forming n2^n-1 commuting cat^1-groups,
516
517
518
 \mathcal{C}_{A,i} ~=~ (e_{A,i};\; t_{A,i},\; h_{A,i} \ :\ G_A \to G_{A
519
\setminus \{i\}}), \quad\mbox{for all} \quad A \subseteq [n],~ i \in
520
A,
521
522

523
524
the edges of the cube.
525
526
 These cat^1-groups combine (in sets of 4) to form n(n-1)2^n-3
527
cat^2-groups mathcalC_A,{i,j} for all {i,j} ⊆ A ⊆ [n],~ i ≠ j, the
528
faces of the cube.
529
530
Note that, since the t_A,i, h_A,i and e_A,i commute, composite homomorphisms
531
t_A,B, h_A,B : G_A -> G_A ∖ B and e_A,B : G_A ∖ B -> G_A are well defined
532
for all B ⊆ A ⊆ [n].
533
534
Secondly, we give the simplest of the three descriptions, again adapted from
535
Ellis-Steiner [ES87].
536
537
A cat^n-group mathcalC consists of 2^n groups G_A, one for each subset A of
538
[n], and 3n homomorphisms
539
540
541
t_{[n],i}, h_{[n],i} : G_{[n]} \to G_{[n] \setminus \{i\}},~ e_{[n],i} :
542
G_{[n] \setminus \{i\}} \to G_{[n]},
543
544

545
546
satisfying the following axioms for all 1 leqslant i leqslant n,}
547
548
 the mathcalC_[n],i ~=~ (e_[n],i; t_[n],i, h_[n],i : G_[n] -> G_[n] ∖
549
{i})~ are commuting cat^1-groups, so that:
550
551
 (e_1 ∘ t_1) ∘ (e_2 ∘ t_2) = (e_2 ∘ t_2) ∘ (e_1 ∘ t_1), quad (e_1 ∘
552
h_1) ∘ (e_2 ∘ h_2) = (e_2 ∘ h_2) ∘ (e_1 ∘ h_1),
553
554
 (e_1 ∘ t_1) ∘ (e_2 ∘ h_2) = (e_2 ∘ h_2) ∘ (e_1 ∘ t_1), quad (e_2 ∘
555
t_2) ∘ (e_1 ∘ h_1) = (e_1 ∘ h_1) ∘ (e_2 ∘ t_2).
556
557
Our third description defines a cat^n-group as a "cat^1-group of
558
cat^(n-1)-groups".
559
560
A cat^n-group mathcalC consists of two cat^(n-1)-groups:
561
562
 mathcalA with groups G_A, A ⊆ [n-1], and homomorphisms ddott_A,i,
563
ddoth_A,i, ddote_A,i,
564
565
 mathcalB with groups H_B, B ⊆ [n-1], and homomorphisms dott_B,i,
566
doth_B,i, dote_B,i, and
567
568
 cat^(n-1)-morphisms t,h : mathcalA -> mathcalB and e : mathcalB ->
569
mathcalA subject to the following conditions:
570
571
572
 (t \circ e) ~\mbox{and}~ (h \circ e) ~\mbox{are the identity mapping
573
on}~ \mathcal{B}, \qquad [\ker t, \ker h] = \{ 1_{\mathcal{A}} \}.
574
575

576
577
578