Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X8 [33X[0;0Y3d-groups and 3d-mappings : crossed squares and cat[22X^2[122X[101X[1X-groups[133X[101X23[33X[0;0YThe term [13X3d-group[113X refers to a set of equivalent categories of which the most4common are the categories of [13Xcrossed squares[113X and [13Xcat[22X^2[122X-groups[113X.[133X567[1X8.1 [33X[0;0YDefinition of a crossed square and a crossed [22Xn[122X[101X[1X-cube of groups[133X[101X89[33X[0;0YCrossed squares were introduced by Guin-Waléry and Loday (see, for example,10[BL87]) as fundamental crossed squares of commutative squares of spaces, but11are also of purely algebraic interest. We denote by [22X[n][122X the set [22X{1,2,...,n}[122X.12We use the [22Xn=2[122X version of the definition of crossed [22Xn[122X-cube as given by Ellis13and Steiner [ES87].[133X1415[33X[0;0YA [13Xcrossed square[113X [22XmathcalS[122X consists of the following:[133X1617[30X [33X[0;6Ygroups [22XS_J[122X for each of the four subsets [22XJ ⊆ [2][122X;[133X1819[30X [33X[0;6Ya commutative diagram of group homomorphisms:[133X202122[24X [33X[0;6Y\ddot{\partial}_1 : S_{[2]} \to S_{\{2\}}, \quad \ddot{\partial}_2 :23S_{[2]} \to S_{\{1\}}, \quad \dot{\partial}_1 : S_{\{1\}} \to24S_{\emptyset}, \quad \dot{\partial}_2 : S_{\{2\}} \to S_{\emptyset};[133X2526[124X2728[30X [33X[0;6Yactions of [22XS_∅[122X on [22XS_{1}, S_{2}[122X and [22XS_[2][122X which determine actions of29[22XS_{1}[122X on [22XS_{2}[122X and [22XS_[2][122X via [22Xdot∂_1[122X and actions of [22XS_{2}[122X on [22XS_{1}[122X and30[22XS_[2][122X via [22Xdot∂_2[122X;[133X3132[30X [33X[0;6Ya function [22X⊠ : S_{1} × S_{2} -> S_[2][122X.[133X3334[33X[0;0YHere is a picture of the situation:[133X353637[24X[33X[0;6Y\vcenter{\xymatrix{ & & S_{[2]} \ar[rr]^{\ddot{\partial}_1}38\ar[dd]_{\ddot{\partial}_2} && S_{\{2\}} \ar[dd]^{\dot{\partial}_2} & \\39\mathcal{S} & = & && \\ & & S_{\{1\}} \ar[rr]_{\dot{\partial}_1} &&40S_{\emptyset} }} }}[133X4142[124X4344[33X[0;0YThe following axioms must be satisfied for all [22Xl ∈ S_[2], m,m_1,m_2 ∈ S_{1},45n,n_1,n_2 ∈ S_{2}, p ∈ S_∅[122X:[133X4647[30X [33X[0;6Ythe homomorphisms [22Xddot∂_1, ddot∂_2[122X preserve the action of [22XS_∅[122X;[133X4849[30X [33X[0;6Yeach of the upper, left-hand, lower, and right-hand sides of the50square,[133X515253[24X [33X[0;6Y\ddot{\mathcal{S}}_1 = (\ddot{\partial}_1 : S_{[2]} \to S_{\{2\}}),54\ddot{\mathcal{S}}_2 = (\ddot{\partial}_2 : S_{[2]} \to S_{\{1\}}),55\dot{\mathcal{S}}_1 = (\dot{\partial}_1 : S_{\{1\}} \to56S_{\emptyset}), \dot{\mathcal{S}}_2 = (\dot{\partial}_2 : S_{\{2\}}57\to S_{\emptyset}),[133X5859[124X6061[33X[0;6Yand the diagonal[133X626364[24X [33X[0;6Y\mathcal{S}_{12} = (\partial_{12} := \dot{\partial}_1\ddot{\partial}_265= \dot{\partial}_2\ddot{\partial}_1 : S_{[2]} \to S_{\emptyset})[133X6667[124X6869[33X[0;6Yare crossed modules (with actions via [22XS_∅[122X);[133X7071[30X [33X[0;6Y[22X⊠[122X is a [13Xcrossed pairing[113X:[133X7273[30X [33X[0;12Y[22X(m_1m_2 ⊠ n) = (m_1 ⊠ n)^m_2 (m_2 ⊠ n)[122X,[133X7475[30X [33X[0;12Y[22X(m ⊠ n_1n_2) = (m ⊠ n_2) (m ⊠ n_1)^n_2[122X,[133X7677[30X [33X[0;12Y[22X(m ⊠ n)^p = (m^p ⊠ n^p)[122X;[133X7879[30X [33X[0;6Y[22Xddot∂_1 (m ⊠ n) = (n^-1)^m n quad mboxand quad ddot∂_2 (m ⊠ n) = m^-180m^n[122X,[133X8182[30X [33X[0;6Y[22X(m ⊠ ddot∂_1 l) = (l^-1)^m l quad mboxand quad (ddot∂_2 l ⊠ n) = l^-183l^n[122X.[133X8485[33X[0;0YNote that the actions of [22XS_{1}[122X on [22XS_{2}[122X and [22XS_{2}[122X on [22XS_{1}[122X via [22XS_∅[122X are86compatible since[133X878889[24X[33X[0;6Y{m_1}^{(n^m)} \;=\; {m_1}^{\dot{\partial}_2(n^m)} \;=\;90{m_1}^{m^{-1}(\dot{\partial}_2 n)m} \;=\; (({m_1}^{m^{-1}})^n)^m.[133X9192[124X9394[33X[0;0Y(A [13Xprecrossed square[113X is a similar structure which satisfies some subset of95these axioms. [More needed here.])[133X9697[33X[0;0YIn what follows we shall generally use the following notation for the [22XS_J[122X,98namely [22XL = S_[2];~ M = S_{1};~ N = S_{2}[122X and [22XP = S_∅[122X.[133X99100[33X[0;0YCrossed squares are the [22Xn=2[122X case of a crossed [22Xn[122X-cube of groups, defined as101follows. (This is an attempt to translate Definition 2.1 in Ronnie's102[13XComputing homotopy types using crossed n-cubes of groups[113X into right actions103-- but this definition is not yet completely understood!)[133X104105[33X[0;0YA [13Xcrossed[113X [22Xn[122X[13X-cube of groups[113X consists of the following:[133X106107[30X [33X[0;6Ygroups [22XS_A[122X for every subset [22XA ⊆ [n][122X;[133X108109[30X [33X[0;6Ya commutative diagram of group homomorphisms [22X∂_i : S_A -> S_A ∖ {i}, i110∈ [n][122X; with composites [22X∂_B : S_A -> S_A ∖ B, B ⊆ [n][122X;[133X111112[30X [33X[0;6Yactions of [22XS_∅[122X on each [22XS_A[122X; and hence actions of [22XS_B[122X on [22XS_A[122X via [22X∂_B[122X113for each [22XB ⊆ [n][122X;[133X114115[30X [33X[0;6Yfunctions [22X⊠_A,B : S_A × S_B -> S_A ∪ B, (A,B ⊆ [n])[122X.[133X116117[33X[0;0YThe following axioms must be satisfied (long list to be added).[133X118119120[1X8.2 [33X[0;0YConstructions for crossed squares[133X[101X121122[33X[0;0YAnalogously to the data structure used for crossed modules, crossed squares123are implemented as [10X3d-groups[110X. When times allows, cat[22X^2[122X-groups will also be124implemented, with conversion between the two types of structure. Some125standard constructions of crossed squares are listed below. At present, a126limited number of constructions are implemented. Morphisms of crossed127squares have also been implemented, though there is a lot still to be done.[133X128129[1X8.2-1 CrossedSquare[101X130131[29X[2XCrossedSquare[102X( [3Xargs[103X ) [32X function132[29X[2XCrossedSquareByNormalSubgroups[102X( [3XP[103X, [3XN[103X, [3XM[103X, [3XL[103X ) [32X operation133[29X[2XActorCrossedSquare[102X( [3XX0[103X ) [32X operation134[29X[2XTranspose3dGroup[102X( [3XS0[103X ) [32X attribute135[29X[2XName[102X( [3XS0[103X ) [32X attribute136137[33X[0;0YHere are some standard examples of crossed squares.[133X138139[30X [33X[0;6YIf [22XM, N[122X are normal subgroups of a group [22XP[122X, and [22XL = M ∩ N[122X, then the140four inclusions, [22XL -> N,~ L -> M,~ M -> P,~ N -> P[122X, together with the141actions of [22XP[122X on [22XM, N[122X and [22XL[122X given by conjugation, form a crossed square142with crossed pairing[133X143144145[24X [33X[0;6Y\boxtimes \;:\; M \times N \to M\cap N, \quad (m,n) \mapsto [m,n]146\,=\, m^{-1}n^{-1}mn \,=\,(n^{-1})^mn \,=\, m^{-1}m^n\,.[133X147148[124X149150[33X[0;6YThis construction is implemented as151[10XCrossedSquareByNormalSubgroups(P,N,M,L);[110X.[133X152153[30X [33X[0;6YThe actor [22XmathcalA(mathcalX_0)[122X of a crossed module [22XmathcalX_0[122X has been154described in Chapter 5. The crossed pairing is given by[133X155156157[24X [33X[0;6Y\boxtimes \;:\; R \times W \,\to\, S, \quad (r,\chi) \,\mapsto\, \chi158r~.[133X159160[124X161162[33X[0;6YThis is implemented as [10XActorCrossedSquare( X0 );[110X.[133X163164[30X [33X[0;6YThe [13Xtranspose[113X of [22XmathcalS[122X is the crossed square [22XtildemathcalS}[122X165obtained by interchanging [22XS_{1}[122X with [22XS_{2}[122X, [22Xddot∂_1[122X with [22Xddot∂_2[122X, and166[22Xdot∂_1[122X with [22Xdot∂_2[122X. The crossed pairing is given by[133X167168169[24X [33X[0;6Y\tilde{\boxtimes} \;:\; S_{\{2\}} \times S_{\{1\}} \to S_{[2]}, \quad170(n,m) \;\mapsto\; n\,\tilde{\boxtimes}\,m := (m \boxtimes n)^{-1}~.[133X171172[124X173174[4X[32X Example [32X[104X175[4X[28X[128X[104X176[4X[25Xgap>[125X [27Xd20 := DihedralGroup( IsPermGroup, 20 );;[127X[104X177[4X[25Xgap>[125X [27Xgend20 := GeneratorsOfGroup( d20 ); [127X[104X178[4X[28X[ (1,2,3,4,5,6,7,8,9,10), (2,10)(3,9)(4,8)(5,7) ][128X[104X179[4X[25Xgap>[125X [27Xp1 := gend20[1];; p2 := gend20[2];; p12 := p1*p2; [127X[104X180[4X[28X(1,10)(2,9)(3,8)(4,7)(5,6)[128X[104X181[4X[25Xgap>[125X [27Xd10a := Subgroup( d20, [ p1^2, p2 ] );;[127X[104X182[4X[25Xgap>[125X [27Xd10b := Subgroup( d20, [ p1^2, p12 ] );;[127X[104X183[4X[25Xgap>[125X [27Xc5d := Subgroup( d20, [ p1^2 ] );;[127X[104X184[4X[25Xgap>[125X [27XSetName( d20, "d20" ); SetName( d10a, "d10a" ); [127X[104X185[4X[25Xgap>[125X [27XSetName( d10b, "d10b" ); SetName( c5d, "c5d" ); [127X[104X186[4X[25Xgap>[125X [27XXSconj := CrossedSquareByNormalSubgroups( d20, d10b, d10a, c5d );[127X[104X187[4X[28X[ c5d -> d10b ][128X[104X188[4X[28X[ | | ][128X[104X189[4X[28X[ d10a -> d20 ][128X[104X190[4X[28X[128X[104X191[4X[25Xgap>[125X [27XName( XSconj );[127X[104X192[4X[28X"[c5d->d10b,d10a->d20]"[128X[104X193[4X[25Xgap>[125X [27XXStrans := Transpose3dGroup( XSconj ); [127X[104X194[4X[28X[ c5d -> d10a ][128X[104X195[4X[28X[ | | ][128X[104X196[4X[28X[ d10b -> d20 ][128X[104X197[4X[28X[128X[104X198[4X[25Xgap>[125X [27XX20 := XModByNormalSubgroup( d20, d10a );[127X[104X199[4X[28X[d10a->d20][128X[104X200[4X[25Xgap>[125X [27XXSact := ActorCrossedSquare( X20 );[127X[104X201[4X[28Xcrossed square with:[128X[104X202[4X[28X up = Whitehead[d10a->d20][128X[104X203[4X[28X left = [d10a->d20][128X[104X204[4X[28X down = Norrie[d10a->d20][128X[104X205[4X[28X right = Actor[d10a->d20][128X[104X206[4X[28X[128X[104X207[4X[32X[104X208209[1X8.2-2 CentralQuotient[101X210211[29X[2XCentralQuotient[102X( [3XX0[103X ) [32X attribute212213[33X[0;0YThe central quotient of a crossed module [22XmathcalX = (∂ : S -> R)[122X is the214crossed square where:[133X215216[30X [33X[0;6Ythe left crossed module is [22XmathcalX[122X;[133X217218[30X [33X[0;6Ythe right crossed module is the quotient [22XmathcalX/Z(mathcalX)[122X (see219[2XCentreXMod[102X ([14X4.1-7[114X));[133X220221[30X [33X[0;6Ythe top and bottom homomorphisms are the natural homomorphisms onto222the quotient groups;[133X223224[30X [33X[0;6Ythe crossed pairing [22X⊠ : (R × F) -> S[122X, where [22XF = Fix(mathcalX,S,R)[122X, is225the displacement element [22X⊠(r,Fs) = ⟨ r,s ⟩ = (s^-1)^rsquad[122X (see226[2XDisplacement[102X ([14X4.1-3[114X) and section [14X4.3[114X).[133X227228[33X[0;0YThis is the special case of an intended function229[10XCrossedSquareByCentralExtension[110X which has not yet been implemented. In the230example [10XXn7[110X [22X⊴[122X [10XX24[110X, constructed in section [14X4.1[114X.[133X231232[4X[32X Example [32X[104X233[4X[28X[128X[104X234[4X[25Xgap>[125X [27Xpos7 := Position( ids, [ [12,2], [24,5] ] );;[127X[104X235[4X[25Xgap>[125X [27XXn7 := nsx[pos7]; [127X[104X236[4X[28X[Group( [ f2, f3, f4 ] )->Group( [ f1, f2, f4, f5 ] )][128X[104X237[4X[25Xgap>[125X [27XIdGroup( CentreXMod(Xn7) ); [127X[104X238[4X[28X[ [ 4, 1 ], [ 4, 1 ] ][128X[104X239[4X[25Xgap>[125X [27XCQXn7 := CentralQuotient( Xn7 );[127X[104X240[4X[28Xcrossed square with:[128X[104X241[4X[28X up = [Group( [ f2, f3, f4 ] )->Group( [ f1 ] )][128X[104X242[4X[28X left = [Group( [ f2, f3, f4 ] )->Group( [ f1, f2, f4, f5 ] )][128X[104X243[4X[28X down = [Group( [ f1, f2, f4, f5 ] )->Group( [ f1, f2 ] )][128X[104X244[4X[28X right = [Group( [ f1 ] )->Group( [ f1, f2 ] )][128X[104X245[4X[28X[128X[104X246[4X[25Xgap>[125X [27XIdGroup( CQXn7 );[127X[104X247[4X[28X[ [ [ 12, 2 ], [ 3, 1 ] ], [ [ 24, 5 ], [ 6, 1 ] ] ][128X[104X248[4X[28X[128X[104X249[4X[32X[104X250251[1X8.2-3 IsCrossedSquare[101X252253[29X[2XIsCrossedSquare[102X( [3Xobj[103X ) [32X property254[29X[2XIs3dObject[102X( [3Xobj[103X ) [32X property255[29X[2XIsPerm3dObject[102X( [3Xobj[103X ) [32X property256[29X[2XIsPc3dObject[102X( [3Xobj[103X ) [32X property257[29X[2XIsFp3dObject[102X( [3Xobj[103X ) [32X property258[29X[2XIsPreCrossedSquare[102X( [3Xobj[103X ) [32X property259260[33X[0;0YThese are the basic properties for 3d-groups, and crossed squares in261particular.[133X262263[1X8.2-4 Up2DimensionalGroup[101X264265[29X[2XUp2DimensionalGroup[102X( [3XXS[103X ) [32X attribute266[29X[2XLeft2DimensionalGroup[102X( [3XXS[103X ) [32X attribute267[29X[2XDown2DimensionalGroup[102X( [3XXS[103X ) [32X attribute268[29X[2XRight2DimensionalGroup[102X( [3XXS[103X ) [32X attribute269[29X[2XDiagonalAction[102X( [3XXS[103X ) [32X attribute270[29X[2XCrossedPairing[102X( [3XXS[103X ) [32X attribute271[29X[2XImageElmCrossedPairing[102X( [3XXS[103X, [3Xpair[103X ) [32X operation272273[33X[0;0YIn this implementation the attributes used in the construction of a crossed274square [10XXS[110X are the four crossed modules (2d-groups) on the sides of the275square (up; down, left; and right); the diagonal action of [22XP[122X on [22XL[122X; and the276crossed pairing.[133X277278[33X[0;0YThe [5XGAP[105X development team have suggested that crossed pairings should be279implemented as a special case of [10XBinaryMappings[110X -- a structure which does280not yet exist in [5XGAP[105X. As a temporary measure, crossed pairings have been281implemented using [10XMapping2ArgumentsByFunction[110X.[133X282283[4X[32X Example [32X[104X284[4X[28X[128X[104X285[4X[25Xgap>[125X [27XUp2DimensionalGroup( XSconj );[127X[104X286[4X[28X[c5d->d10b][128X[104X287[4X[25Xgap>[125X [27XRight2DimensionalGroup( XSact );[127X[104X288[4X[28XActor[d10a->d20][128X[104X289[4X[25Xgap>[125X [27Xxpconj := CrossedPairing( XSconj );;[127X[104X290[4X[25Xgap>[125X [27XImageElmCrossedPairing( xpconj, [ p2, p12 ] );[127X[104X291[4X[28X(1,9,7,5,3)(2,10,8,6,4)[128X[104X292[4X[25Xgap>[125X [27Xdiag := DiagonalAction( XSact );[127X[104X293[4X[28X[ (1,3,5,2,4)(6,10,14,8,12)(7,11,15,9,13), (1,2,5,4)(6,8,14,12)(7,11,13,9) [128X[104X294[4X[28X ] -> [128X[104X295[4X[28X[ (1,3,5,2,4)(6,10,14,8,12)(7,11,15,9,13), (1,2,5,4)(6,8,14,12)(7,11,13,9) [128X[104X296[4X[28X ] -> [ ^(1,3,5,7,9)(2,4,6,8,10), ^(1,2,5,4)(3,8)(6,7,10,9) ][128X[104X297[4X[28X[128X[104X298[4X[32X[104X299300301[1X8.3 [33X[0;0YMorphisms of crossed squares[133X[101X302303[33X[0;0YThis section describes an initial implementation of morphisms of304(pre-)crossed squares.[133X305306[1X8.3-1 Source[101X307308[29X[2XSource[102X( [3Xmap[103X ) [32X attribute309[29X[2XRange[102X( [3Xmap[103X ) [32X attribute310[29X[2XUp2DimensionalMorphism[102X( [3Xmap[103X ) [32X attribute311[29X[2XLeft2DimensionalMorphism[102X( [3Xmap[103X ) [32X attribute312[29X[2XDown2DimensionalMorphism[102X( [3Xmap[103X ) [32X attribute313[29X[2XRight2DimensionalMorphism[102X( [3Xmap[103X ) [32X attribute314315[33X[0;0YMorphisms of [10X3dObjects[110X are implemented as [10X3dMappings[110X. These have a pair of3163d-groups as source and range, together with four 2d-morphisms mapping317between the four pairs of crossed modules on the four sides of the squares.318These functions return [10Xfail[110X when invalid data is supplied.[133X319320[1X8.3-2 IsCrossedSquareMorphism[101X321322[29X[2XIsCrossedSquareMorphism[102X( [3Xmap[103X ) [32X property323[29X[2XIsPreCrossedSquareMorphism[102X( [3Xmap[103X ) [32X property324[29X[2XIsBijective[102X( [3Xmor[103X ) [32X property325[29X[2XIsEndomorphism3dObject[102X( [3Xmor[103X ) [32X property326[29X[2XIsAutomorphism3dObject[102X( [3Xmor[103X ) [32X property327328[33X[0;0YA morphism [10Xmor[110X between two pre-crossed squares [22XmathcalS_1[122X and [22XmathcalS_2[122X329consists of four crossed module morphisms [10XUp2DimensionalMorphism(mor)[110X,330mapping the [10XUp2DimensionalGroup[110X of [22XmathcalS_1[122X to that of [22XmathcalS_2[122X,331[10XLeft2DimensionalMorphism(mor)[110X, [10XDown2DimensionalMorphism(mor)[110X and332[10XRight2DimensionalMorphism(mor)[110X. These four morphisms are required to commute333with the four boundary maps and to preserve the rest of the structure. The334current version of [10XIsCrossedSquareMorphism[110X does not perform all the required335checks.[133X336337[4X[32X Example [32X[104X338[4X[28X[128X[104X339[4X[25Xgap>[125X [27Xad20 := GroupHomomorphismByImages( d20, d20, [p1,p2], [p1,p2^p1] );;[127X[104X340[4X[25Xgap>[125X [27Xad10a := GroupHomomorphismByImages( d10a, d10a, [p1^2,p2], [p1^2,p2^p1] );;[127X[104X341[4X[25Xgap>[125X [27Xad10b := GroupHomomorphismByImages( d10b, d10b, [p1^2,p12], [p1^2,p12^p1] );;[127X[104X342[4X[25Xgap>[125X [27Xidc5d := IdentityMapping( c5d );;[127X[104X343[4X[25Xgap>[125X [27Xupconj := Up2DimensionalGroup( XSconj );;[127X[104X344[4X[25Xgap>[125X [27Xleftconj := Left2DimensionalGroup( XSconj );; [127X[104X345[4X[25Xgap>[125X [27Xdownconj := Down2DimensionalGroup( XSconj );; [127X[104X346[4X[25Xgap>[125X [27Xrightconj := Right2DimensionalGroup( XSconj );; [127X[104X347[4X[25Xgap>[125X [27Xup := XModMorphismByHoms( upconj, upconj, idc5d, ad10b );[127X[104X348[4X[28X[[c5d->d10b] => [c5d->d10b]][128X[104X349[4X[25Xgap>[125X [27Xleft := XModMorphismByHoms( leftconj, leftconj, idc5d, ad10a );[127X[104X350[4X[28X[[c5d->d10a] => [c5d->d10a]][128X[104X351[4X[25Xgap>[125X [27Xdown := XModMorphismByHoms( downconj, downconj, ad10a, ad20 );[127X[104X352[4X[28X[[d10a->d20] => [d10a->d20]][128X[104X353[4X[25Xgap>[125X [27Xright := XModMorphismByHoms( rightconj, rightconj, ad10b, ad20 );[127X[104X354[4X[28X[[d10b->d20] => [d10b->d20]][128X[104X355[4X[25Xgap>[125X [27Xautoconj := CrossedSquareMorphism( XSconj, XSconj, up, left, right, down );; [127X[104X356[4X[25Xgap>[125X [27Xord := Order( autoconj );;[127X[104X357[4X[25Xgap>[125X [27XDisplay( autoconj );[127X[104X358[4X[28XMorphism of crossed squares :- [128X[104X359[4X[28X: Source = [c5d->d10b,d10a->d20][128X[104X360[4X[28X: Range = [c5d->d10b,d10a->d20][128X[104X361[4X[28X: order = 5[128X[104X362[4X[28X: up-left: [ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10) ], [128X[104X363[4X[28X [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10) ] ][128X[104X364[4X[28X: up-right: [128X[104X365[4X[28X[ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6) ], [128X[104X366[4X[28X [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1, 2)( 3,10)( 4, 9)( 5, 8)( 6, 7) ] ][128X[104X367[4X[28X: down-left: [128X[104X368[4X[28X[ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 2,10)( 3, 9)( 4, 8)( 5, 7) ], [128X[104X369[4X[28X [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1, 3)( 4,10)( 5, 9)( 6, 8) ] ][128X[104X370[4X[28X: down-right: [128X[104X371[4X[28X[ [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10), ( 2,10)( 3, 9)( 4, 8)( 5, 7) ], [128X[104X372[4X[28X [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10), ( 1, 3)( 4,10)( 5, 9)( 6, 8) ] ][128X[104X373[4X[25Xgap>[125X [27XIsAutomorphismHigherDimensionalDomain( autoconj );[127X[104X374[4X[28Xtrue[128X[104X375[4X[25Xgap>[125X [27XKnownPropertiesOfObject( autoconj );[127X[104X376[4X[28X[ "CanEasilyCompareElements", "CanEasilySortElements", "IsTotal", [128X[104X377[4X[28X "IsSingleValued", "IsInjective", "IsSurjective", [128X[104X378[4X[28X "IsPreCrossedSquareMorphism", "IsCrossedSquareMorphism", [128X[104X379[4X[28X "IsEndomorphismHigherDimensionalDomain", [128X[104X380[4X[28X "IsAutomorphismHigherDimensionalDomain" ][128X[104X381[4X[28X[128X[104X382[4X[32X[104X383384385[1X8.4 [33X[0;0YDefinitions and constructions for cat[22X^2[122X[101X[1X-groups and their morphisms[133X[101X386387[33X[0;0YWe shall give three definitions of cat[22X^2[122X-groups and show that they are388equivalent. When we come to define cat[22X^n[122X-groups we shall give a similar set389of three definitions.[133X390391[33X[0;0YFirstly, we take the definition of a cat[22X^2[122X-group from Section 5 of Brown and392Loday [BL87], suitably modified. A cat[22X^2[122X-group [22XmathcalC =393(C_[2],C_{2},C_{1},C_∅)[122X comprises four groups (one for each of the subsets394of [22X[2][122X) and [22X15[122X homomorphisms, as shown in the following diagram:[133X395396397[24X[33X[0;6Y\vcenter{\xymatrix{ & C_{[2]} \ar[ddd] <-1.2ex> \ar[ddd]398<-2.0ex>_{\ddot{t}_2,\ddot{h}_2} \ar[rrr] <+1.2ex> \ar[rrr]399<+2.0ex>^{\ddot{t}_1,\ddot{h}_1} \ar[dddrrr] <-0.2ex> \ar[dddrrr]400<-1.0ex>_(0.55){t_{[2]},h_{[2]}} &&& C_{\{2\}} \ar[lll]^{\ddot{e}_1}401\ar[ddd]<+1.2ex> \ar[ddd] <+2.0ex>^{\dot{t}_2,\dot{h}_2} \\ \mathcal{C}402\quad = \quad & &&& \\ & &&& \\ & C_{\{1\}} \ar[uuu]_{\ddot{e}_2} \ar[rrr]403<-1.2ex> \ar[rrr] <-2.0ex>_{\dot{t}_1,\dot{h}_1} &&& C_{\emptyset}404\ar[uuu]^{\dot{e}_2} \ar[lll]_{\dot{e}_1} \ar[uuulll] <-1.0ex>_{e_{[2]}} \\405}}[133X406407[124X408409[33X[0;0YThe following axioms are satisfied by these homomorphisms:[133X410411[30X [33X[0;6Ythe four sides of the square are cat[22X^1[122X-groups, denoted412[22XddotmathcalC}_1, ddotmathcalC}_2, dotmathcalC}_1, dotmathcalC}_2[122X,[133X413414[30X [33X[0;6Y[22Xdott_1∘ddoth_2 = doth_2∘ddott_1, ~ dott_2∘ddoth_1 = doth_1∘ddott_2, ~415dote_1∘dott_2 = ddott_2∘ddote_1, ~ dote_2∘dott_1 = ddott_1∘ddote_2, ~416dote_1∘doth_2 = ddoth_2∘ddote_1, ~ dote_2∘doth_1 = ddoth_1∘ddote_2,[122X[133X417418[30X [33X[0;6Y[22Xdott_1∘ddott_2 = dott_2∘ddott_1 = t_[2], ~ doth_1∘ddoth_2 =419doth_2∘ddoth_1 = h_[2], ~ dote_1∘ddote_2 = dote_2∘ddote_1 = e_[2],[122X420making the diagonal a cat[22X^1[122X-group [22X(e_[2]; t_[2], h_[2] : C_[2] ->421C_∅)[122X.[133X422423[33X[0;0YIt follows from these identities that [22X(ddott_1,dott_1),(ddoth_1,doth_1)[122X and424[22X(ddote_1,dote_1)[122X are morphisms of cat[22X^1[122X-groups.[133X425426[33X[0;0YSecondly, we give the simplest of the three definitions, adapted from427Ellis-Steiner [ES87]. A cat[22X^2[122X-group [22XmathcalC[122X consists of groups [22XG, R_1,R_2[122X428and six homomorphisms [22Xt_1,h_1 : G -> R_2,~ e_1 : R_2 -> G,~ t_2,h_2 : G ->429R_1,~ e_2 : R_1 -> G[122X, satisfying the following axioms for all [22X1 leqslant i430leqslant 2[122X,[133X431432[30X [33X[0;6Y[22X(t_i ∘ e_i)r = r,~ (h_i ∘ e_i)r = r,~ ∀ r ∈ R_[2] ∖ {i}, quad [ker433t_i, ker h_i] = 1,[122X[133X434435[30X [33X[0;6Y[22X(e_1 ∘ t_1) ∘ (e_2 ∘ t_2) = (e_2 ∘ t_2) ∘ (e_1 ∘ t_1), quad (e_1 ∘436h_1) ∘ (e_2 ∘ h_2) = (e_2 ∘ h_2) ∘ (e_1 ∘ h_1),[122X[133X437438[30X [33X[0;6Y[22X(e_1 ∘ t_1) ∘ (e_2 ∘ h_2) = (e_2 ∘ h_2) ∘ (e_1 ∘ t_1), quad (e_2 ∘439t_2) ∘ (e_1 ∘ h_1) = (e_1 ∘ h_1) ∘ (e_2 ∘ t_2).[122X[133X440441[33X[0;0YOur third definition defines a cat[22X^2[122X-group as a "cat[22X^1[122X-group of442cat[22X^1[122X-groups". A cat[22X^2[122X-group [22XmathcalC[122X consists of two cat[22X^1[122X-groups443[22XmathcalC_1 = (e_1;t_1,h_1 : G_1 -> R_1)[122X and [22XmathcalC_2 = (e_2;t_2,h_2 : G_2444-> R_2)[122X and cat[22X^1[122X-morphisms [22Xt = (ddott,dott), h = (ddoth,doth) : mathcalC_1445-> mathcalC_2, e = (ddote,dote) : mathcalC_2 -> mathcalC_1[122X, subject to the446following conditions:[133X447448449[24X[33X[0;6Y(t \circ e) ~\mbox{and}~ (h \circ e) ~\mbox{are the identity mapping on}~450\mathcal{C}_2, \qquad [\ker t, \ker h] = \{ 1_{\mathcal{C}_1} \},[133X451452[124X453454[33X[0;0Ywhere [22Xker t = (ker ddott, ker dott)[122X, and similarly for [22Xker h[122X.[133X455456[1X8.4-1 Cat2Group[101X457458[29X[2XCat2Group[102X( [3Xargs[103X ) [32X function459[29X[2XPreCat2Group[102X( [3Xargs[103X ) [32X function460[29X[2XPreCat2GroupByPreCat1Groups[102X( [3XL[103X ) [32X operation461462[33X[0;0YThe global functions [10XCat2Group[110X and [10XPreCat2Group[110X are normally called with a463single argument, a list of cat1-groups.[133X464465[4X[32X Example [32X[104X466[4X[28X[128X[104X467[4X[25Xgap>[125X [27XCC6 := Cat2Group( Cat1Group(6,2,2), Cat1Group(6,2,3) );[127X[104X468[4X[28Xgenerating (pre-)cat1-groups:[128X[104X469[4X[28X1 : [C6=>Group( [ f1 ] )][128X[104X470[4X[28X2 : [C6=>Group( [ f2 ] )][128X[104X471[4X[28X[128X[104X472[4X[25Xgap>[125X [27XIsCat2Group( CC6 );[127X[104X473[4X[28Xtrue[128X[104X474[4X[28X[128X[104X475[4X[32X[104X476477[1X8.4-2 Cat2GroupOfCrossedSquare[101X478479[29X[2XCat2GroupOfCrossedSquare[102X( [3Xxsq[103X ) [32X attribute480[29X[2XCrossedSquareOfCat2Group[102X( [3XCC[103X ) [32X attribute481482[33X[0;0Y[13XThese functions are very experimental, and should not be relied on![113X[133X483484[33X[0;0YThese functions provide the conversion from crossed square to cat2-group,485and conversely. (They are the 3-dimensional equivalents of [10XCat1GroupOfXMod[110X486and [10XXModOfCat1Group[110X.)[133X487488[4X[32X Example [32X[104X489[4X[28X[128X[104X490[4X[25Xgap>[125X [27XxsCC6 := CrossedSquareOfCat2Group( CC6 );[127X[104X491[4X[28Xcrossed square with:[128X[104X492[4X[28X up = [Group( () )->Group( [ (1,2) ] )][128X[104X493[4X[28X left = [Group( () )->Group( [ (), (3,4,5) ] )][128X[104X494[4X[28X down = [Group( [ (), (3,4,5) ] ) -> Group( () )][128X[104X495[4X[28X right = [Group( [ (1,2) ] ) -> Group( () )][128X[104X496[4X[25Xgap>[125X [27XCat2GroupOfCrossedSquare( XSact );[127X[104X497[4X[28XWarning: these conversion functions are still under development[128X[104X498[4X[28Xfail[128X[104X499[4X[28X[128X[104X500[4X[32X[104X501502503[1X8.5 [33X[0;0YDefinition and constructions for cat[22X^n[122X[101X[1X-groups and their morphisms[133X[101X504505[33X[0;0YIn this chapter we are interested in cat[22X^2[122X-groups, but it is convenient in506this section to give the more general definition. There are three equivalent507description of a cat[22X^n[122X-group.[133X508509[33X[0;0YA [13Xcat[22X^n[122X-group[113X consists of the following.[133X510511[30X [33X[0;6Y[22X2^n[122X groups [22XG_A[122X, one for each subset [22XA[122X of [22X[n][122X, the [13Xvertices[113X of an512[22Xn[122X-cube.[133X513514[30X [33X[0;6YGroup homomorphisms forming [22Xn2^n-1[122X commuting cat[22X^1[122X-groups,[133X515516517[24X [33X[0;6Y\mathcal{C}_{A,i} ~=~ (e_{A,i};\; t_{A,i},\; h_{A,i} \ :\ G_A \to G_{A518\setminus \{i\}}), \quad\mbox{for all} \quad A \subseteq [n],~ i \in519A,[133X520521[124X522523[33X[0;6Ythe [13Xedges[113X of the cube.[133X524525[30X [33X[0;6YThese cat[22X^1[122X-groups combine (in sets of [22X4[122X) to form [22Xn(n-1)2^n-3[122X526cat[22X^2[122X-groups [22XmathcalC_A,{i,j}[122X for all [22X{i,j} ⊆ A ⊆ [n],~ i ≠ j[122X, the527[13Xfaces[113X of the cube.[133X528529[33X[0;0YNote that, since the [22Xt_A,i, h_A,i[122X and [22Xe_A,i[122X commute, composite homomorphisms530[22Xt_A,B, h_A,B : G_A -> G_A ∖ B[122X and [22Xe_A,B : G_A ∖ B -> G_A[122X are well defined531for all [22XB ⊆ A ⊆ [n][122X.[133X532533[33X[0;0YSecondly, we give the simplest of the three descriptions, again adapted from534Ellis-Steiner [ES87].[133X535536[33X[0;0YA cat[22X^n[122X-group [22XmathcalC[122X consists of [22X2^n[122X groups [22XG_A[122X, one for each subset [22XA[122X of537[22X[n][122X, and [22X3n[122X homomorphisms[133X538539540[24X[33X[0;6Yt_{[n],i}, h_{[n],i} : G_{[n]} \to G_{[n] \setminus \{i\}},~ e_{[n],i} :541G_{[n] \setminus \{i\}} \to G_{[n]},[133X542543[124X544545[33X[0;0Ysatisfying the following axioms for all [22X1 leqslant i leqslant n[122X,}[133X546547[30X [33X[0;6Ythe [22XmathcalC_[n],i ~=~ (e_[n],i; t_[n],i, h_[n],i : G_[n] -> G_[n] ∖548{i})~[122X are [13Xcommuting[113X cat[22X^1[122X-groups, so that:[133X549550[30X [33X[0;6Y[22X(e_1 ∘ t_1) ∘ (e_2 ∘ t_2) = (e_2 ∘ t_2) ∘ (e_1 ∘ t_1), quad (e_1 ∘551h_1) ∘ (e_2 ∘ h_2) = (e_2 ∘ h_2) ∘ (e_1 ∘ h_1),[122X[133X552553[30X [33X[0;6Y[22X(e_1 ∘ t_1) ∘ (e_2 ∘ h_2) = (e_2 ∘ h_2) ∘ (e_1 ∘ t_1), quad (e_2 ∘554t_2) ∘ (e_1 ∘ h_1) = (e_1 ∘ h_1) ∘ (e_2 ∘ t_2).[122X[133X555556[33X[0;0YOur third description defines a cat[22X^n[122X-group as a "cat[22X^1[122X-group of557cat[22X^(n-1)[122X-groups".[133X558559[33X[0;0YA [13Xcat[22X^n[122X-group[113X [22XmathcalC[122X consists of two cat[22X^(n-1)[122X-groups:[133X560561[30X [33X[0;6Y[22XmathcalA[122X with groups [22XG_A, A ⊆ [n-1][122X, and homomorphisms [22Xddott_A,i,562ddoth_A,i, ddote_A,i[122X,[133X563564[30X [33X[0;6Y[22XmathcalB[122X with groups [22XH_B, B ⊆ [n-1][122X, and homomorphisms [22Xdott_B,i,565doth_B,i, dote_B,i[122X, and[133X566567[30X [33X[0;6Ycat[22X^(n-1)[122X-morphisms [22Xt,h : mathcalA -> mathcalB[122X and [22Xe : mathcalB ->568mathcalA[122X subject to the following conditions:[133X569570571[24X [33X[0;6Y(t \circ e) ~\mbox{and}~ (h \circ e) ~\mbox{are the identity mapping572on}~ \mathcal{B}, \qquad [\ker t, \ker h] = \{ 1_{\mathcal{A}} \}.[133X573574[124X575576577578