Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X9 [33X[0;0YCrossed modules of groupoids[133X[101X23[33X[0;0YThe material documented in this chapter is experimental, and is likely to be4changed very soon.[133X567[1X9.1 [33X[0;0YConstructions for crossed modules of groupoids[133X[101X89[33X[0;0YA typical example of a crossed module [22XmathcalX[122X over a groupoid has for its10range a connected groupoid. This is a direct product of a group with a11complete graph, and we call the vertices of the graph the [13Xobjects[113X of the12crossed module. The source of [22XmathcalX[122X is a groupoid, with the same objects,13which is either discrete or connected. The boundary morphism is constant on14objects. For details and other references see [AW10].[133X1516[1X9.1-1 SinglePiecePreXModWithObjects[101X1718[29X[2XSinglePiecePreXModWithObjects[102X( [3Xpxmod[103X, [3Xobs[103X, [3Xisdisc[103X ) [32X operation1920[33X[0;0YAt present the experimental operation [10XSinglePiecePreXModWithObjects[110X accepts21a precrossed module [10Xpxmod[110X, a set of objects [10Xobs[110X, and a boolean [10Xisdisc[110X which22is [10Xtrue[110X when the source groupoid is homogeneous and discrete and [10Xfalse[110X when23the source groupoid is connected. Other operations will be added as time24permits.[133X2526[33X[0;0YIn the example the crossed module [10XDX4[110X has discrete source, and is a groupoid27equivalent of [10XXModByNormalSubgroup[110X.[133X2829[4X[32X Example [32X[104X30[4X[28X[128X[104X31[4X[25Xgap>[125X [27Xs4 := Group( (1,2,3,4), (3,4) );; [127X[104X32[4X[25Xgap>[125X [27XSetName( s4, "s4" );[127X[104X33[4X[25Xgap>[125X [27Xa4 := Subgroup( s4, [ (1,2,3), (2,3,4) ] );;[127X[104X34[4X[25Xgap>[125X [27XSetName( a4, "a4" );[127X[104X35[4X[25Xgap>[125X [27XX4 := XModByNormalSubgroup( s4, a4 );; [127X[104X36[4X[25Xgap>[125X [27XDX4 := SinglePiecePreXModWithObjects( X4, [-9,-8,-7], false );[127X[104X37[4X[28Xprecrossed module with source groupoid:[128X[104X38[4X[28Xsingle piece groupoid: < a4, [ -9, -8, -7 ] >[128X[104X39[4X[28Xand range groupoid:[128X[104X40[4X[28Xsingle piece groupoid: < s4, [ -9, -8, -7 ] >[128X[104X41[4X[25Xgap>[125X [27XGa4 := Source( DX4 );; [127X[104X42[4X[25Xgap>[125X [27XGs4 := Range( DX4 );;[127X[104X43[4X[28X[128X[104X44[4X[32X[104X4546[1X9.1-2 IsXModWithObjects[101X4748[29X[2XIsXModWithObjects[102X( [3Xpxmod[103X ) [32X property49[29X[2XIsPreXModWithObjects[102X( [3Xpxmod[103X ) [32X property50[29X[2XIsDirectProductWithCompleteDigraphDomain[102X( [3Xpxmod[103X ) [32X property5152[33X[0;0YThe precrossed module [10XDX4[110X belongs to the category53[10XIs2DimensionalGroupWithObjects[110X and is, of course, a crossed module.[133X5455[4X[32X Example [32X[104X56[4X[28X[128X[104X57[4X[25Xgap>[125X [27XIsXModWithObjects( DX4 ); [127X[104X58[4X[28Xtrue[128X[104X59[4X[25Xgap>[125X [27XKnownPropertiesOfObject( DX4 ); [127X[104X60[4X[28X[ "CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree", [128X[104X61[4X[28X "IsGeneratorsOfSemigroup", "IsSinglePieceDomain", [128X[104X62[4X[28X "IsDirectProductWithCompleteDigraphDomain", "IsPreXModWithObjects", [128X[104X63[4X[28X "IsXModWithObjects" ][128X[104X64[4X[28X[128X[104X65[4X[32X[104X6667[1X9.1-3 IsPermPreXModWithObjects[101X6869[29X[2XIsPermPreXModWithObjects[102X( [3Xpxmod[103X ) [32X property70[29X[2XIsPcPreXModWithObjects[102X( [3Xpxmod[103X ) [32X property71[29X[2XIsFpPreXModWithObjects[102X( [3Xpxmod[103X ) [32X property7273[33X[0;0YTo test these properties we test the precrossed modules from which they were74constructed.[133X7576[4X[32X Example [32X[104X77[4X[28X[128X[104X78[4X[25Xgap>[125X [27XIsPermPreXModWithObjects( DX4 );[127X[104X79[4X[28Xtrue[128X[104X80[4X[25Xgap>[125X [27XIsPcPreXModWithObjects( DX4 ); [127X[104X81[4X[28Xfalse[128X[104X82[4X[25Xgap>[125X [27XIsFpPreXModWithObjects( DX4 );[127X[104X83[4X[28Xfalse[128X[104X84[4X[28X[128X[104X85[4X[32X[104X8687[1X9.1-4 Root2dGroup[101X8889[29X[2XRoot2dGroup[102X( [3Xpxmod[103X ) [32X attribute90[29X[2XXModAction[102X( [3Xpxmod[103X ) [32X attribute9192[33X[0;0YThe attributes of a precrossed module with objects include the standard93[10XSource[110X; [10XRange[110X; [10XBoundary[110X; and [10XXModAction[110X as with precrossed modules of94groups. There is also [10XObjectList[110X, as in the [5Xgroupoids[105X package. Additionally95there is [10XRoot2dGroup[110X which is the underlying precrossed module used in the96construction.[133X9798[33X[0;0YNote that [10XXModAction[110X is now a groupoid homomorphism from the source groupoid99to a one-object groupoid (with object [10X0[110X) where the group is the automorphism100group of the range groupoid.[133X101102[4X[32X Example [32X[104X103[4X[28X[128X[104X104[4X[25Xgap>[125X [27XKnownAttributesOfObject(DX4);[127X[104X105[4X[28X[ "Range", "Source", "Boundary", "ObjectList", "XModAction", "Root2dGroup" ][128X[104X106[4X[25Xgap>[125X [27XRoot2dGroup( DX4 ); [127X[104X107[4X[28X[a4->s4][128X[104X108[4X[25Xgap>[125X [27Xact := XModAction( DX4 );; [127X[104X109[4X[25Xgap>[125X [27Xr := Arrow( Gs4, (1,2,3,4), -7, -8 );; [127X[104X110[4X[25Xgap>[125X [27XImageElm( act, r ); [127X[104X111[4X[28X[groupoid homomorphism : [128X[104X112[4X[28X[ [ [(1,2,3) : -9 -> -9], [(2,3,4) : -9 -> -9], [() : -9 -> -8], [128X[104X113[4X[28X [() : -9 -> -7] ], [128X[104X114[4X[28X [ [(2,3,4) : -9 -> -9], [(1,3,4) : -9 -> -9], [() : -9 -> -7], [128X[104X115[4X[28X [() : -9 -> -8] ] ] : 0 -> 0][128X[104X116[4X[25Xgap>[125X [27Xs := Arrow( Ga4, (1,2,4), -8, -8 );;[127X[104X117[4X[25Xgap>[125X [27X## calculate s^r [127X[104X118[4X[25Xgap>[125X [27Xims := ImageElmXModAction( DX4, s, r );[127X[104X119[4X[28X[(1,2,3) : -7 -> -7][128X[104X120[4X[28X[128X[104X121[4X[32X[104X122123[33X[0;0YThere is much more to be done with these constructions.[133X124125126127