CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
3
References
4
5
[Alp97] Alp, M., GAP, crossed modules, cat1-groups: applications of
6
computational group theory, Ph.{D}.~thesis, University of Wales, Bangor
7
(1997).
8
9
[AW00] Alp, M. and Wensley, C. D., Enumeration of cat1-groups of low order,
10
Int. J. Algebra and Computation, 10 (2000), 407--424.
11
12
[AW10] Alp, M. and Wensley, C. D., Automorphisms and homotopies of groupoids
13
and crossed modules, Applied Categorical Structures, 18 (2010), 473-495.
14
15
[BH78] Brown, R. and Higgins, P. J., On the connection between the second
16
relative homotopy group and some related spaces, Proc. London Math. Soc., 36
17
(1978), 193--212.
18
19
[BHS11] Brown, R., Higgins, P. J. and Sivera, R., Nonabelian algrebraic
20
topology, European Mathematical Society, Tracts in Mathematics, 15 (2011).
21
22
[BL87] Brown, R. and Loday, J. -.L., Van Kampen theorems for diagram of
23
spaces, Topology, 26 (1987), 311--335.
24
25
[Bro82] Brown, R. (Brown, R. and Thickstun, T. L., Eds.), Higher-dimensional
26
group theory, in Low-dimensional topology, Cambridge University Press,
27
London Math. Soc. Lecture Note Series, 48 (1982), 215--238.
28
29
[BW95] Brown, R. and Wensley, C. D., On finite induced crossed modules, and
30
the homotopy 2-type of mapping cones, Theory and Applications of Categories,
31
1 (1995), 54--71.
32
33
[BW96] Brown, R. and Wensley, C. D., Computing crossed modules induced by an
34
inclusion of a normal subgroup, with applications to homotopy 2-types,
35
Theory and Applications of Categories, 2 (1996), 3--16.
36
37
[BW03] Brown, R. and Wensley, C. D., Computation and homotopical
38
applications of induced crossed modules, J. Symbolic Computation, 35 (2003),
39
59--72.
40
41
[Ell84] Ellis, G., Crossed modules and their higher dimensional analogues,
42
Ph.{D}.~thesis, University of Wales, Bangor (1984).
43
44
[ES87] Ellis, G. and Steiner, R., Higher dimensional crossed modules and the
45
homotopy groups of (n+1)-ads., J. Pure and Appl. Algebra, 46 (1987),
46
117--136.
47
48
[Gil90] Gilbert, N. D., Derivations, automorphisms and crossed modules,
49
Comm. in Algebra, 18 (1990), 2703--2734.
50
51
[Hor17] Horn, M.,  GitHubPagesForGAP - a GitHub Pages generator for GAP
52
packages , 0.2 (2017), (( GAP package,
53
https://gap-system.github.io/GitHubPagesForGAP/ )).
54
55
[IOU16] Ilgaz, E., Odabas, A. and Uslu, E. O., Isoclinism of crossed
56
modules, J. Symb. Comput.,  (2016), 1--17,
57
((http://dx.doi.org/10.1016/j.jsc.2015.08.006)).
58
59
[JNO90] James, R., Newman, M. F. and O'Brien, E. A., The groups of order
60
128, J. Algebra, 129 (1990), 136--158.
61
62
[LN17] Lübeck, F. and Neunhöffer, M., GAPDoc (version 1.6), RWTH Aachen
63
(2017), (( GAP package,
64
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html )).
65
66
[Lod82] Loday, J. L., Spaces with finitely many non-trivial homotopy groups,
67
J. App. Algebra, 24 (1982), 179--202.
68
69
[Moo01] Moore, E. J., Graphs of Groups: Word Computations and Free Crossed
70
Resolutions, Ph.{D}.~thesis, University of Wales, Bangor (2001).
71
72
[Nor87] Norrie, K. J., Crossed modules and analogues of group theorems,
73
Ph.{D}.~thesis, King's College, University of London (1987).
74
75
[Nor90] Norrie, K. J., Actions and automorphisms of crossed modules, Bull.
76
Soc. Math. France, 118 (1990), 129--146.
77
78
[Whi48] Whitehead, J. H. C., On operators in relative homotopy groups, Ann.
79
of Math., 49 (1948), 610--640.
80
81
[Whi49] Whitehead, J. H. C., Combinatorial homotopy II, Bull. Amer. Math.
82
Soc., 55 (1949), 453--496.
83
84
85
86

87
88