Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41834612[1XReferences[101X34[[20XAlp97[120X] [16XAlp, M.[116X, [17XGAP, crossed modules, cat1-groups: applications of5computational group theory[117X, Ph.{D}.~thesis, University of Wales, Bangor6(1997).78[[20XAW00[120X] [16XAlp, M. and Wensley, C. D.[116X, [17XEnumeration of cat1-groups of low order[117X,9[18XInt. J. Algebra and Computation[118X, [19X10[119X (2000), 407--424.1011[[20XAW10[120X] [16XAlp, M. and Wensley, C. D.[116X, [17XAutomorphisms and homotopies of groupoids12and crossed modules[117X, [18XApplied Categorical Structures[118X, [19X18[119X (2010), 473-495.1314[[20XBH78[120X] [16XBrown, R. and Higgins, P. J.[116X, [17XOn the connection between the second15relative homotopy group and some related spaces[117X, [18XProc. London Math. Soc.[118X, [19X36[119X16(1978), 193--212.1718[[20XBHS11[120X] [16XBrown, R., Higgins, P. J. and Sivera, R.[116X, [17XNonabelian algrebraic19topology[117X, European Mathematical Society, Tracts in Mathematics, [19X15[119X (2011).2021[[20XBL87[120X] [16XBrown, R. and Loday, J. -.L.[116X, [17XVan Kampen theorems for diagram of22spaces[117X, [18XTopology[118X, [19X26[119X (1987), 311--335.2324[[20XBro82[120X] [16XBrown, R.[116X ([1m[31mBrown, R. and Thickstun, T. L.[15X, Eds.), [17XHigher-dimensional25group theory[117X, in Low-dimensional topology, Cambridge University Press,26London Math. Soc. Lecture Note Series, [19X48[119X (1982), 215--238.2728[[20XBW95[120X] [16XBrown, R. and Wensley, C. D.[116X, [17XOn finite induced crossed modules, and29the homotopy 2-type of mapping cones[117X, [18XTheory and Applications of Categories[118X,30[19X1[119X (1995), 54--71.3132[[20XBW96[120X] [16XBrown, R. and Wensley, C. D.[116X, [17XComputing crossed modules induced by an33inclusion of a normal subgroup, with applications to homotopy 2-types[117X,34[18XTheory and Applications of Categories[118X, [19X2[119X (1996), 3--16.3536[[20XBW03[120X] [16XBrown, R. and Wensley, C. D.[116X, [17XComputation and homotopical37applications of induced crossed modules[117X, [18XJ. Symbolic Computation[118X, [19X35[119X (2003),3859--72.3940[[20XEll84[120X] [16XEllis, G.[116X, [17XCrossed modules and their higher dimensional analogues[117X,41Ph.{D}.~thesis, University of Wales, Bangor (1984).4243[[20XES87[120X] [16XEllis, G. and Steiner, R.[116X, [17XHigher dimensional crossed modules and the44homotopy groups of (n+1)-ads.[117X, [18XJ. Pure and Appl. Algebra[118X, [19X46[119X (1987),45117--136.4647[[20XGil90[120X] [16XGilbert, N. D.[116X, [17XDerivations, automorphisms and crossed modules[117X,48[18XComm. in Algebra[118X, [19X18[119X (1990), 2703--2734.4950[[20XHor17[120X] [16XHorn, M.[116X, [17X GitHubPagesForGAP - a GitHub Pages generator for GAP51packages [117X, [19X0.2[119X (2017), (( GAP package,52https://gap-system.github.io/GitHubPagesForGAP/ )).5354[[20XIOU16[120X] [16XIlgaz, E., Odabas, A. and Uslu, E. O.[116X, [17XIsoclinism of crossed55modules[117X, [18XJ. Symb. Comput.[118X, [19X[119X (2016), 1--17,56((http://dx.doi.org/10.1016/j.jsc.2015.08.006)).5758[[20XJNO90[120X] [16XJames, R., Newman, M. F. and O'Brien, E. A.[116X, [17XThe groups of order59128[117X, [18XJ. Algebra[118X, [19X129[119X (1990), 136--158.6061[[20XLN17[120X] [16XLübeck, F. and Neunhöffer, M.[116X, [17XGAPDoc (version 1.6)[117X, RWTH Aachen62(2017), (( GAP package,63http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html )).6465[[20XLod82[120X] [16XLoday, J. L.[116X, [17XSpaces with finitely many non-trivial homotopy groups[117X,66[18XJ. App. Algebra[118X, [19X24[119X (1982), 179--202.6768[[20XMoo01[120X] [16XMoore, E. J.[116X, [17XGraphs of Groups: Word Computations and Free Crossed69Resolutions[117X, Ph.{D}.~thesis, University of Wales, Bangor (2001).7071[[20XNor87[120X] [16XNorrie, K. J.[116X, [17XCrossed modules and analogues of group theorems[117X,72Ph.{D}.~thesis, King's College, University of London (1987).7374[[20XNor90[120X] [16XNorrie, K. J.[116X, [17XActions and automorphisms of crossed modules[117X, [18XBull.75Soc. Math. France[118X, [19X118[119X (1990), 129--146.7677[[20XWhi48[120X] [16XWhitehead, J. H. C.[116X, [17XOn operators in relative homotopy groups[117X, [18XAnn.78of Math.[118X, [19X49[119X (1948), 610--640.7980[[20XWhi49[120X] [16XWhitehead, J. H. C.[116X, [17XCombinatorial homotopy II[117X, [18XBull. Amer. Math.81Soc.[118X, [19X55[119X (1949), 453--496.82838485[32X868788