Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<!-- ------------------------------------------------------------------- -->1<!-- -->2<!-- gp2act.xml XMod documentation Chris Wensley -->3<!-- & Murat Alp -->4<!-- Copyright (C) 2001-2016, Chris Wensley et al, -->5<!-- School of Computer Science, Bangor University, U.K. -->6<!-- -->7<!-- ------------------------------------------------------------------- -->89<?xml version="1.0" encoding="UTF-8"?>1011<Chapter Label="chap-gp2act">12<Heading>Actors of 2d-groups</Heading>1314<Section><Heading>Actor of a crossed module</Heading>15<Index>actor</Index>1617The <E>actor</E> of <M>\mathcal{X}</M> is a crossed module18<M>(\Delta : \mathcal{W}(\mathcal{X}) \to &Aut;(\mathcal{X}))</M>19which was shown by Lue and Norrie, in <Cite Key="N2" />20and <Cite Key="N1" /> to give the automorphism object21of a crossed module <M>\mathcal{X}</M>.22In this implementation, the source of the actor is a permutation23representation <M>W</M> of the Whitehead group of regular derivations,24and the range of the actor is a permutation representation <M>A</M>25of the automorphism group <M>&Aut;(\mathcal{X})</M> of <M>\mathcal{X}</M>.2627<ManSection>28<Attr Name="AutomorphismPermGroup"29Arg="xmod" />30<Attr Name="GeneratingAutomorphisms"31Arg="xmod" />32<Attr Name="PermAutomorphismAsXModMorphism"33Arg="xmod perm" />34<Description>35The automorphisms <M>( \sigma, \rho )</M> of <M>\mathcal{X}</M> form a group36<M>&Aut;(\mathcal{X})</M> of crossed module isomorphisms.37The function <C>AutomorphismPermGroup</C> finds a set of38<C>GeneratingAutomorphisms</C> for <M>&Aut;(\mathcal{X})</M>,39and then constructs a permutation representation of this group,40which is used as the range of the actor crossed module of <M>\mathcal{X}</M>.41The individual automorphisms can be constructed from the permutation group42using the function <C>PermAutomorphismAsXModMorphism</C>.43The example below uses the crossed module <Code>X3=[c3->s3]</Code>44constructed in section <Ref Sect="sect-whitehead-mult" />.45</Description>46</ManSection>47<P/>48<Example>49<![CDATA[50gap> APX3 := AutomorphismPermGroup( X3 );51Group([ (5,7,6), (1,2)(3,4)(6,7) ])52gap> Size( APX3 );53654gap> genX3 := GeneratingAutomorphisms( X3 );55[ [[c3->s3] => [c3->s3]], [[c3->s3] => [c3->s3]] ]56gap> e6 := Elements( APX3 )[6];57(1,2)(3,4)(5,7)58gap> m6 := PermAutomorphismAsXModMorphism( X3, e6 );;59gap> Display( m6 );60Morphism of crossed modules :-61: Source = [c3->s3] with generating sets:62[ (1,2,3)(4,6,5) ]63[ (4,5,6), (2,3)(5,6) ]64: Range = Source65: Source Homomorphism maps source generators to:66[ (1,3,2)(4,5,6) ]67: Range Homomorphism maps range generators to:68[ (4,6,5), (2,3)(4,5) ]69]]>70</Example>717273<ManSection>74<Attr Name="WhiteheadXMod"75Arg="xmod" />76<Attr Name="LueXMod"77Arg="xmod" />78<Attr Name="NorrieXMod"79Arg="xmod" />80<Attr Name="ActorXMod"81Arg="xmod" />82<Attr Name="AutomorphismPermGroup"83Arg="xmod" />84<Description>85An automorphism <M>( \sigma, \rho )</M> of <C>X</C>86acts on the Whitehead monoid by87<M>\chi^{(\sigma,\rho)} = \sigma \circ \chi \circ \rho^{-1}</M>,88and this determines the action for the actor.89In fact the four groups <M>R, S, W, A</M>, the homomorphisms between them,90and the various actions,91give five crossed modules forming a <E>crossed square</E>:92<Index>crossed square</Index>93<List>94<Item>95<M>\mathcal{X} = (\partial : S \to R),~</M>96the initial crossed module, on the left,97</Item>98<Item>99<M>\mathcal{W}(\mathcal{X}) = (\eta : S \to W),~</M>100the Whitehead crossed module of <M>\mathcal{X}</M>, at the top,101</Item>102<Item>103<M>\mathcal{N}(X) = (\alpha : R \to A),~</M>104the Norrie crossed module of <M>\mathcal{X}</M>, at the bottom,105</Item>106<Item>107<M>&Act;(\mathcal{X}) = ( \Delta : W \to A),~</M>108the actor crossed module of <M>\mathcal{X}</M>, on the right, and109</Item>110<Item>111<M>\mathcal{L}(\mathcal{X})112= (\Delta\circ\eta = \alpha\circ\partial : S \to A),~</M>113the Lue crossed module of <M>\mathcal{X}</M>,114along the top-left to bottom-right diagonal.115</Item>116</List>117</Description>118</ManSection>119<P/>120<Example>121<![CDATA[122gap> WGX3 := WhiteheadPermGroup( X3 );123Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])124gap> WX3 := WhiteheadXMod( X3 );;125gap> Display( WX3 );126Crossed module Whitehead[c3->s3] :-127: Source group has generators:128[ (1,2,3)(4,6,5) ]129: Range group has generators:130[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]131: Boundary homomorphism maps source generators to:132[ (1,2,3)(4,5,6) ]133: Action homomorphism maps range generators to automorphisms:134(1,2,3)(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }135(1,4)(2,6)(3,5) --> { source gens --> [ (1,3,2)(4,5,6) ] }136These 2 automorphisms generate the group of automorphisms.137gap> LX3 := LueXMod( X3 );;138gap> Display( LX3 );139Crossed module Lue[c3->s3] :-140: Source group has generators:141[ (1,2,3)(4,6,5) ]142: Range group has generators:143[ (5,7,6), (1,2)(3,4)(6,7) ]144: Boundary homomorphism maps source generators to:145[ (5,7,6) ]146: Action homomorphism maps range generators to automorphisms:147(5,7,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }148(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,5,6) ] }149These 2 automorphisms generate the group of automorphisms.150gap> NX3 := NorrieXMod( X3 );;151gap> Display( NX3 );152Crossed module Norrie[c3->s3] :-153: Source group has generators:154[ (4,5,6), (2,3)(5,6) ]155: Range group has generators:156[ (5,7,6), (1,2)(3,4)(6,7) ]157: Boundary homomorphism maps source generators to:158[ (5,6,7), (1,2)(3,4)(6,7) ]159: Action homomorphism maps range generators to automorphisms:160(5,7,6) --> { source gens --> [ (4,5,6), (2,3)(4,5) ] }161(1,2)(3,4)(6,7) --> { source gens --> [ (4,6,5), (2,3)(5,6) ] }162These 2 automorphisms generate the group of automorphisms.163gap> AX3 := ActorXMod( X3 );;164gap> Display( AX3);165Crossed module Actor[c3->s3] :-166: Source group has generators:167[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]168: Range group has generators:169[ (5,7,6), (1,2)(3,4)(6,7) ]170: Boundary homomorphism maps source generators to:171[ (5,7,6), (1,2)(3,4)(6,7) ]172: Action homomorphism maps range generators to automorphisms:173(5,7,6) --> { source gens --> [ (1,2,3)(4,5,6), (1,6)(2,5)(3,4) ] }174(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5), (1,4)(2,6)(3,5) ] }175These 2 automorphisms generate the group of automorphisms.176177gap> IAX3 := InnerActorXMod( X3 );;178gap> Display( IAX3 );179Crossed module InnerActor[c3->s3] :-180: Source group has generators:181[ (1,2,3)(4,5,6) ]182: Range group has generators:183[ (5,6,7), (1,2)(3,4)(6,7) ]184: Boundary homomorphism maps source generators to:185[ (5,7,6) ]186: Action homomorphism maps range generators to automorphisms:187(5,6,7) --> { source gens --> [ (1,2,3)(4,5,6) ] }188(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5) ] }189These 2 automorphisms generate the group of automorphisms.190]]>191</Example>192193<ManSection>194<Attr Name="XModCentre"195Arg="xmod" />196<Attr Name="InnerActorXMod"197Arg="xmod" />198<Attr Name="InnerMorphism"199Arg="xmod" />200<Description>201Pairs of boundaries or identity mappings202provide six morphisms of crossed modules.203In particular, the boundaries of <M>\mathcal{W}(\mathcal{X})</M>204and <M>\mathcal{N}(\mathcal{X})</M>205form the <E>inner morphism</E> of <M>\mathcal{X}</M>,206mapping source elements to principal derivations207and range elements to inner automorphisms.208The image of <M>\mathcal{X}</M> under this morphism is the209<E>inner actor</E> of <M>\mathcal{X}</M>,210while the kernel is the <E>centre</E> of <M>\mathcal{X}</M>.211In the example which follows, the inner morphism of212<Code>X3=(c3->s3)</Code>, from Chapter <Ref Chap="chap-gp2up" />,213is an inclusion of crossed modules.214<P/>215Note that we appear to have defined <E>two</E> sorts of <E>centre</E>216for a crossed module: <C>XModCentre</C> here,217and <Ref Func="CentreXMod" /> in the chapter on isoclinism.218We suspect that these two definitions give the same answer,219but this remains to be resolved.220</Description>221</ManSection>222<P/>223<Example>224<![CDATA[225gap> IMX3 := InnerMorphism( X3 );;226gap> Display( IMX3 );227Morphism of crossed modules :-228: Source = [c3->s3] with generating sets:229[ (1,2,3)(4,6,5) ]230[ (4,5,6), (2,3)(5,6) ]231: Range = Actor[c3->s3] with generating sets:232[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]233[ (5,7,6), (1,2)(3,4)(6,7) ]234: Source Homomorphism maps source generators to:235[ (1,2,3)(4,5,6) ]236: Range Homomorphism maps range generators to:237[ (5,6,7), (1,2)(3,4)(6,7) ]238gap> IsInjective( IMX3 );239true240gap> ZX3 := XModCentre( X3 );241[Group( () )->Group( () )]242]]>243</Example>244245</Section>246247</Chapter>248249250