CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<!-- ------------------------------------------------------------------- -->
2
<!-- -->
3
<!-- gp2act.xml XMod documentation Chris Wensley -->
4
<!-- & Murat Alp -->
5
<!-- Copyright (C) 2001-2016, Chris Wensley et al, -->
6
<!-- School of Computer Science, Bangor University, U.K. -->
7
<!-- -->
8
<!-- ------------------------------------------------------------------- -->
9
10
<?xml version="1.0" encoding="UTF-8"?>
11
12
<Chapter Label="chap-gp2act">
13
<Heading>Actors of 2d-groups</Heading>
14
15
<Section><Heading>Actor of a crossed module</Heading>
16
<Index>actor</Index>
17
18
The <E>actor</E> of <M>\mathcal{X}</M> is a crossed module
19
<M>(\Delta : \mathcal{W}(\mathcal{X}) \to &Aut;(\mathcal{X}))</M>
20
which was shown by Lue and Norrie, in <Cite Key="N2" />
21
and <Cite Key="N1" /> to give the automorphism object
22
of a crossed module <M>\mathcal{X}</M>.
23
In this implementation, the source of the actor is a permutation
24
representation <M>W</M> of the Whitehead group of regular derivations,
25
and the range of the actor is a permutation representation <M>A</M>
26
of the automorphism group <M>&Aut;(\mathcal{X})</M> of <M>\mathcal{X}</M>.
27
28
<ManSection>
29
<Attr Name="AutomorphismPermGroup"
30
Arg="xmod" />
31
<Attr Name="GeneratingAutomorphisms"
32
Arg="xmod" />
33
<Attr Name="PermAutomorphismAsXModMorphism"
34
Arg="xmod perm" />
35
<Description>
36
The automorphisms <M>( \sigma, \rho )</M> of <M>\mathcal{X}</M> form a group
37
<M>&Aut;(\mathcal{X})</M> of crossed module isomorphisms.
38
The function <C>AutomorphismPermGroup</C> finds a set of
39
<C>GeneratingAutomorphisms</C> for <M>&Aut;(\mathcal{X})</M>,
40
and then constructs a permutation representation of this group,
41
which is used as the range of the actor crossed module of <M>\mathcal{X}</M>.
42
The individual automorphisms can be constructed from the permutation group
43
using the function <C>PermAutomorphismAsXModMorphism</C>.
44
The example below uses the crossed module <Code>X3=[c3->s3]</Code>
45
constructed in section <Ref Sect="sect-whitehead-mult" />.
46
</Description>
47
</ManSection>
48
<P/>
49
<Example>
50
<![CDATA[
51
gap> APX3 := AutomorphismPermGroup( X3 );
52
Group([ (5,7,6), (1,2)(3,4)(6,7) ])
53
gap> Size( APX3 );
54
6
55
gap> genX3 := GeneratingAutomorphisms( X3 );
56
[ [[c3->s3] => [c3->s3]], [[c3->s3] => [c3->s3]] ]
57
gap> e6 := Elements( APX3 )[6];
58
(1,2)(3,4)(5,7)
59
gap> m6 := PermAutomorphismAsXModMorphism( X3, e6 );;
60
gap> Display( m6 );
61
Morphism of crossed modules :-
62
: Source = [c3->s3] with generating sets:
63
[ (1,2,3)(4,6,5) ]
64
[ (4,5,6), (2,3)(5,6) ]
65
: Range = Source
66
: Source Homomorphism maps source generators to:
67
[ (1,3,2)(4,5,6) ]
68
: Range Homomorphism maps range generators to:
69
[ (4,6,5), (2,3)(4,5) ]
70
]]>
71
</Example>
72
73
74
<ManSection>
75
<Attr Name="WhiteheadXMod"
76
Arg="xmod" />
77
<Attr Name="LueXMod"
78
Arg="xmod" />
79
<Attr Name="NorrieXMod"
80
Arg="xmod" />
81
<Attr Name="ActorXMod"
82
Arg="xmod" />
83
<Attr Name="AutomorphismPermGroup"
84
Arg="xmod" />
85
<Description>
86
An automorphism <M>( \sigma, \rho )</M> of <C>X</C>
87
acts on the Whitehead monoid by
88
<M>\chi^{(\sigma,\rho)} = \sigma \circ \chi \circ \rho^{-1}</M>,
89
and this determines the action for the actor.
90
In fact the four groups <M>R, S, W, A</M>, the homomorphisms between them,
91
and the various actions,
92
give five crossed modules forming a <E>crossed square</E>:
93
<Index>crossed square</Index>
94
<List>
95
<Item>
96
<M>\mathcal{X} = (\partial : S \to R),~</M>
97
the initial crossed module, on the left,
98
</Item>
99
<Item>
100
<M>\mathcal{W}(\mathcal{X}) = (\eta : S \to W),~</M>
101
the Whitehead crossed module of <M>\mathcal{X}</M>, at the top,
102
</Item>
103
<Item>
104
<M>\mathcal{N}(X) = (\alpha : R \to A),~</M>
105
the Norrie crossed module of <M>\mathcal{X}</M>, at the bottom,
106
</Item>
107
<Item>
108
<M>&Act;(\mathcal{X}) = ( \Delta : W \to A),~</M>
109
the actor crossed module of <M>\mathcal{X}</M>, on the right, and
110
</Item>
111
<Item>
112
<M>\mathcal{L}(\mathcal{X})
113
= (\Delta\circ\eta = \alpha\circ\partial : S \to A),~</M>
114
the Lue crossed module of <M>\mathcal{X}</M>,
115
along the top-left to bottom-right diagonal.
116
</Item>
117
</List>
118
</Description>
119
</ManSection>
120
<P/>
121
<Example>
122
<![CDATA[
123
gap> WGX3 := WhiteheadPermGroup( X3 );
124
Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])
125
gap> WX3 := WhiteheadXMod( X3 );;
126
gap> Display( WX3 );
127
Crossed module Whitehead[c3->s3] :-
128
: Source group has generators:
129
[ (1,2,3)(4,6,5) ]
130
: Range group has generators:
131
[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
132
: Boundary homomorphism maps source generators to:
133
[ (1,2,3)(4,5,6) ]
134
: Action homomorphism maps range generators to automorphisms:
135
(1,2,3)(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
136
(1,4)(2,6)(3,5) --> { source gens --> [ (1,3,2)(4,5,6) ] }
137
These 2 automorphisms generate the group of automorphisms.
138
gap> LX3 := LueXMod( X3 );;
139
gap> Display( LX3 );
140
Crossed module Lue[c3->s3] :-
141
: Source group has generators:
142
[ (1,2,3)(4,6,5) ]
143
: Range group has generators:
144
[ (5,7,6), (1,2)(3,4)(6,7) ]
145
: Boundary homomorphism maps source generators to:
146
[ (5,7,6) ]
147
: Action homomorphism maps range generators to automorphisms:
148
(5,7,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
149
(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,5,6) ] }
150
These 2 automorphisms generate the group of automorphisms.
151
gap> NX3 := NorrieXMod( X3 );;
152
gap> Display( NX3 );
153
Crossed module Norrie[c3->s3] :-
154
: Source group has generators:
155
[ (4,5,6), (2,3)(5,6) ]
156
: Range group has generators:
157
[ (5,7,6), (1,2)(3,4)(6,7) ]
158
: Boundary homomorphism maps source generators to:
159
[ (5,6,7), (1,2)(3,4)(6,7) ]
160
: Action homomorphism maps range generators to automorphisms:
161
(5,7,6) --> { source gens --> [ (4,5,6), (2,3)(4,5) ] }
162
(1,2)(3,4)(6,7) --> { source gens --> [ (4,6,5), (2,3)(5,6) ] }
163
These 2 automorphisms generate the group of automorphisms.
164
gap> AX3 := ActorXMod( X3 );;
165
gap> Display( AX3);
166
Crossed module Actor[c3->s3] :-
167
: Source group has generators:
168
[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
169
: Range group has generators:
170
[ (5,7,6), (1,2)(3,4)(6,7) ]
171
: Boundary homomorphism maps source generators to:
172
[ (5,7,6), (1,2)(3,4)(6,7) ]
173
: Action homomorphism maps range generators to automorphisms:
174
(5,7,6) --> { source gens --> [ (1,2,3)(4,5,6), (1,6)(2,5)(3,4) ] }
175
(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5), (1,4)(2,6)(3,5) ] }
176
These 2 automorphisms generate the group of automorphisms.
177
178
gap> IAX3 := InnerActorXMod( X3 );;
179
gap> Display( IAX3 );
180
Crossed module InnerActor[c3->s3] :-
181
: Source group has generators:
182
[ (1,2,3)(4,5,6) ]
183
: Range group has generators:
184
[ (5,6,7), (1,2)(3,4)(6,7) ]
185
: Boundary homomorphism maps source generators to:
186
[ (5,7,6) ]
187
: Action homomorphism maps range generators to automorphisms:
188
(5,6,7) --> { source gens --> [ (1,2,3)(4,5,6) ] }
189
(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5) ] }
190
These 2 automorphisms generate the group of automorphisms.
191
]]>
192
</Example>
193
194
<ManSection>
195
<Attr Name="XModCentre"
196
Arg="xmod" />
197
<Attr Name="InnerActorXMod"
198
Arg="xmod" />
199
<Attr Name="InnerMorphism"
200
Arg="xmod" />
201
<Description>
202
Pairs of boundaries or identity mappings
203
provide six morphisms of crossed modules.
204
In particular, the boundaries of <M>\mathcal{W}(\mathcal{X})</M>
205
and <M>\mathcal{N}(\mathcal{X})</M>
206
form the <E>inner morphism</E> of <M>\mathcal{X}</M>,
207
mapping source elements to principal derivations
208
and range elements to inner automorphisms.
209
The image of <M>\mathcal{X}</M> under this morphism is the
210
<E>inner actor</E> of <M>\mathcal{X}</M>,
211
while the kernel is the <E>centre</E> of <M>\mathcal{X}</M>.
212
In the example which follows, the inner morphism of
213
<Code>X3=(c3->s3)</Code>, from Chapter <Ref Chap="chap-gp2up" />,
214
is an inclusion of crossed modules.
215
<P/>
216
Note that we appear to have defined <E>two</E> sorts of <E>centre</E>
217
for a crossed module: <C>XModCentre</C> here,
218
and <Ref Func="CentreXMod" /> in the chapter on isoclinism.
219
We suspect that these two definitions give the same answer,
220
but this remains to be resolved.
221
</Description>
222
</ManSection>
223
<P/>
224
<Example>
225
<![CDATA[
226
gap> IMX3 := InnerMorphism( X3 );;
227
gap> Display( IMX3 );
228
Morphism of crossed modules :-
229
: Source = [c3->s3] with generating sets:
230
[ (1,2,3)(4,6,5) ]
231
[ (4,5,6), (2,3)(5,6) ]
232
: Range = Actor[c3->s3] with generating sets:
233
[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
234
[ (5,7,6), (1,2)(3,4)(6,7) ]
235
: Source Homomorphism maps source generators to:
236
[ (1,2,3)(4,5,6) ]
237
: Range Homomorphism maps range generators to:
238
[ (5,6,7), (1,2)(3,4)(6,7) ]
239
gap> IsInjective( IMX3 );
240
true
241
gap> ZX3 := XModCentre( X3 );
242
[Group( () )->Group( () )]
243
]]>
244
</Example>
245
246
</Section>
247
248
</Chapter>
249
250