Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W gp2ind.g XMOD example files Chris Wensley ## #Y Copyright (C) 2001-2017, Chris Wensley et al, #Y School of Computer Science, Bangor University, U.K. ## ############################################################################# Print("\nXMod test file gp2ind.g (version 23/04/17) :-"); Print("\nSurjective example :-\n" ); level := InfoLevel( InfoXMod ); SetInfoLevel( InfoXMod, 0 ); s4gens := [ (1,2), (2,3), (3,4) ]; s4 := Group( s4gens ); SetName(s4,"s4"); a4gens := [ (1,2,3), (2,3,4) ]; a4 := Subgroup( s4, a4gens ); SetName( a4, "a4" ); s3 := Group( (5,6),(6,7) ); SetName( s3, "s3" ); epi := GroupHomomorphismByImages( s4, s3, s4gens, [(5,6),(6,7),(5,6)] ); X4 := XModByNormalSubgroup( s4, a4 ); indX4 := SurjectiveInducedXMod( X4, epi ); Print( "\n", indX4, "\n" ); Display( indX4 ); morX4 := MorphismOfInducedXMod( indX4 ); Print( "\n", morX4, "\n" ); Print("\nInjective example :-\n" ); c := (11,12,13,14,15,16,17,18);; d := (12,18)(13,17)(14,16);; d16 := Group( c, d ); gend16 := GeneratorsOfGroup( d16 ); sk4 := Subgroup( d16, [ c^4, d ] ); gensk4 := GeneratorsOfGroup( sk4 ); SetName( d16, "d16" ); SetName( sk4, "sk4" ); Print( "\n", GeneratorsOfGroup( d16 ), "\n" ); d8 := Subgroup( d16, [ c^2, d ] ); c4 := Subgroup( d8, [ c^2 ] ); SetName( d8, "d8" ); SetName( c4, "c4" ); X16 := XModByNormalSubgroup( d16, d8 ); Print( X16, "\n" ); X8 := SubXMod( X16, c4, d8 ); Print( X8, "\n" ); Print( IsSubXMod( X16, X8 ), "\n" ); inc8 := InclusionMorphism2DimensionalDomains( X16, X8 ); Print( inc8, "\n" ); rho := GroupHomomorphismByImages( d16, d16, [c,d], [c,d^(c^2)] ); sigma := GroupHomomorphismByImages( d8, d8, [c^2,d], [c^2,d^(c^2)] ); mor := XModMorphismByHoms( X16, X16, sigma, rho ); Print( mor, "\n" ); comp := inc8 * mor; Print( "comp = ", comp, "\n" ); Print( "comp = CompositionMorphism(mor,inc8) ?\n" ); Print( comp = CompositionMorphism(mor,inc8), "\n" ); incd8 := RangeHom( inc8 ); Print( [ Source(incd8), Range(incd8), IsInjective(incd8) ], "\n" ); indX8 := InducedXMod( X8, incd8 ); Print( "\n", indX8, "\n" ); Display( indX8 ); morX8 := MorphismOfInducedXMod( indX8 ); Print( "\n", morX8, "\n" ); Display( morX8 ); Print("HERE\n"); s3b := Subgroup( s4, [ (2,3), (3,4) ] );; SetName( s3b, "s3b" ); indX3 := InducedXMod( s4, s3b, s3b ); Print( "\n", indX3, "\n" ); isoX3 := IsomorphismGroups( Source( indX3 ), GeneralLinearGroup(2,3) ); Print( "\n", isoX3, "\n" ); Print("\n\nUsing function BookExample :-\n" ); Print( "=============================\n\n" ); BookExample := function(M,P,Q) local ok, gensP, inc, X1, X2; ok := IsNormal(P,M) and IsSubgroup(Q,P); if ok then X1 := XModByNormalSubgroup(P,M); gensP := GeneratorsOfGroup(P); inc := GroupHomomorphismByImages(P,Q,gensP,gensP); X2 := InducedXMod( X1, inc ); fi; Display(X2); return X2; end; s4 := Group( (1,2),(2,3),(3,4) ); SetName(s4,"s4"); a4 := Subgroup(s4,[(1,2,3),(2,3,4)]); SetName(a4,"a4"); d8a := Subgroup(s4,[(1,2,3,4),(1,3)]); SetName(d8a,"d8a"); c4a := Subgroup(s4,[(1,2,3,4)]); SetName(c4a,"c4a"); indC4D8S4 := BookExample( c4a, d8a, s4 ); G := Source( indC4D8S4 ); iso := IsomorphismGroups( G, s4 ); Print( "source of induced xmod is isomorphic to s4 :-\n", iso, "\n\n" ); s3a := Subgroup( s4, [(1,2),(2,3)] ); SetName(s3a,"s3a"); c3a := Subgroup(s4,[(1,2,3)]); SetName(c3a,"c3a"); indC3C3S4 := BookExample( c3a, c3a, s4 ); c3sl23 := Source( indC3C3S4 ); indC3S3S4 := BookExample( c3a, s3a, s4 ); sl23 := Source( indC3S3S4 ); indS3S3S4 := BookExample( s3a, s3a, s4 ); gl23 := Source( indS3S3S4 ); indC4C4S4 := BookExample( c4a, c4a, s4 ); G96 := Source( indC4C4S4 ); Print( "G96: ", StructureDescription(G96), "\n" ); A96 := AutomorphismGroup(G96); Print( "A96: ", StructureDescription(A96), "\n" ); c2b := Subgroup( s4, [(1,2)(3,4)] ); SetName( c2b, "c2b" ); indC2C2S4 := BookExample( c2b, c2b, s4 ); G128 := Source( indC2C2S4 ); ## Print( "G128: ", StructureDescription(G128), "\n" ); ccgl23 := ConjugacyClassesSubgroups( gl23 ); Print( "length: ", List( ccgl23, c -> Size(c) ), "\n" ); Print( "orders: ", List( ccgl23, c -> Size(Representative(c)) ), "\n" ); sl23b := Representative( ccgl23[15] ); indSSG23 := BookExample( sl23b, sl23b, gl23 ); H72 := Source( indSSG23 ); Print( "H72: ", StructureDescription(H72), "\n" ); ccsl23 := ConjugacyClassesSubgroups( sl23b ); Print( "length: ", List( ccsl23, c -> Size(c) ), "\n" ); Print( "orders: ", List( ccsl23, c -> Size(Representative(c)) ), "\n" ); c3b := Representative( ccsl23[3] ); indC3C3SL23 := BookExample( c3b, c3b, sl23b ); Print( "indC3C3SL23: ", StructureDescription( Source(indC3C3SL23) ), "\n" ); c4b := Representative( ccsl23[4] ); indC4C4SL23 := BookExample( c4b, c4b, sl23b ); Print( "indC4C4SL23: ", StructureDescription( Source(indC4C4SL23) ), "\n" ); Print( "\nWorking with GL(3,2) = Aut(C_2^3), of order 168 :-\n\n" ); gl32a := GeneralLinearGroup(3,2); isogl32 := IsomorphismPermGroup( gl32a ); gl32 := Image( isogl32 ); Print( GeneratorsOfGroup( gl32 ), "\n\n" ); ccgl32 := ConjugacyClassesSubgroups( gl32 ); Print( "length: ", List( ccgl32, c -> Size(c) ), "\n" ); Print( "orders: ", List( ccgl32, c -> Size(Representative(c)) ), "\n" ); Print( "\nWorking with SL(2,7), of order 336 :-\n\n" ); sl27a := SpecialLinearGroup(2,7); isosl27 := IsomorphismPermGroup( sl27a ); sl27 := Image( isosl27 ); Print( "\nSL(2,7) has size ", Size(sl27), " and generators:\n" ); Print( GeneratorsOfGroup( sl27 ), "\n" ); ccsl27 := ConjugacyClassesSubgroups( sl27 ); Print( "length: ", List( ccsl27, c -> Size(c) ), "\n" ); Print( "orders: ", List( ccsl27, c -> Size(Representative(c)) ), "\n" ); SetInfoLevel( InfoXMod, 0 ); ############################################################################# ## #E gp2ind.g . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here