CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
#W  util.gi                    GAP4 package `XMod'               Chris Wensley
#W                                                                 & Murat Alp
#Y  Copyright (C) 2001-2017, Chris Wensley et al,  
#Y  School of Computer Science, Bangor University, U.K. 

##############################################################################
##
#M  AbelianModuleObject( <abgrp>, <act> )
#M  TrivialAction                                       of group H on group G
#M  AbelianModuleWithTrivialAction( <abgrp>, <gp> )           (added 19/07/07)
##
InstallMethod( AbelianModuleObject, "for abelian group and group action",
    true, [ IsGroup, IsGroupHomomorphism ], 0,
function( ab, act )

    local rng, obj;

    if not IsCommutative( ab ) then 
        Error( "group is not commutative" );
    fi; 
    rng := Range( act ); 
    if not ( IsGroupOfAutomorphisms( rng ) and 
             ( AutomorphismDomain( rng ) = ab ) ) then 
        Error( "Range(act) is not a group of autios of ab" ); 
    fi; 
    obj := rec();
    ObjectifyWithAttributes( obj, IsAbelianModuleType, 
      AbelianModuleGroup, ab,
      AbelianModuleAction, act,
      IsAbelianModule, true );
    return obj;
end );

InstallMethod( TrivialAction, "for groups", true, [ IsGroup, IsGroup ], 0,
function( G, H )

    local triv;

    triv := Group( IdentityMapping( G ) );
    return MappingToOne( H, triv );
end );

InstallMethod( AbelianModuleWithTrivialAction, 
    "for abelian group and group action", true, [ IsGroup, IsGroup ], 0,
function( ab, gp )
    return AbelianModuleObject( ab, TrivialAction( ab, gp ) );
end );

##############################################################################
##
#M  InnerAutomorphismsByNormalSubgroup       for a group and a normal subgroup
##
InstallMethod( InnerAutomorphismsByNormalSubgroup,
    "for a group and a normal subgroup", true, [ IsGroup, IsGroup ], 0,
function( G, N )

    local nargs, id, genG, genN, autG, genA, A, g, conj, name;

    if not IsNormal( G, N ) then
        Error( "Second parameter must be normal subgroup of the first\n" );
    fi;
    if ( ( G = N ) and HasAutomorphismGroup( G ) ) then
        autG := AutomorphismGroup( G );
        return InnerAutomorphismsAutomorphismGroup( autG );
    fi;
    genG := GeneratorsOfGroup( G );
    genN := GeneratorsOfGroup( N );
    id := InclusionMappingGroups( N, N );
    genA := [ ];
    for g in genG do
        conj := InnerAutomorphism( N, g );
        Add( genA, conj );
    od;
    A := Group( genA, id );
    SetIsGroupOfAutomorphisms( A, true );
    return A;
end );

##############################################################################
##  ????? needs to be removed/changed ?????
##############################################################################
##
#M  IsomorphismSmallPermGroup
##
##  added 08/04/01, using SmallerDegreePermutationRepresentation
##  revised 23/06/06, introducing Nicer...
##
InstallMethod( IsomorphismSmallPermGroup, "for a group", true,
    [ IsGroup ], 0,
function( G )

    local G2P, P, nP, P2S, nS, S, genG, numG, j, p, imiso, iso;

    if HasNicerMonomorphism( G ) then 
        G2P := NicerMonomorphism( G );
        if ( G2P = fail ) then
            ## tried this before, with no success
            return NiceMonomorphism( G );
        else
            return NicerMonomorphism( G );
        fi;
    fi;
    if HasNiceMonomorphism( G ) then 
        G2P := NiceMonomorphism( G );
    else
        G2P := IsomorphismPermGroup( G );
        SetNiceMonomorphism( G, G2P );
        SetNiceObject( G, Image( G2P ) );
    fi;
    P := Image( G2P );
    nP := NrMovedPoints( P );
    P2S := SmallerDegreePermutationRepresentation( P );
    if ( P2S = fail ) then
        SetNicerMonomorphism( G, fail );
        iso := G2P;
    else
        S := ImagesSource( P2S );
        nS := NrMovedPoints( S );
        if ( nP = nS ) then
        SetNicerMonomorphism( G, fail );
        iso := G2P;            
        else
            Info( InfoXMod, 2, "found smaller perm representation" );
            genG := GeneratorsOfGroup( G );
            numG := Length( genG );
            imiso := ListWithIdenticalEntries( numG, 0 );
            for j in [1..numG] do
                p := Image( G2P, genG[j] );
                imiso[j] := Image( P2S, p );
            od; 
            iso := GroupHomomorphismByImages( G, S, genG, imiso );
        fi;
    fi;
    if ( HasName( G ) and not HasName( Range( iso ) ) ) then
        SetName( Range( iso ), Concatenation( "P", Name( G ) ) );
    fi;
    SetNicerMonomorphism( G, iso );
    if not ( iso = fail ) then
        SetNicerObject( G, Image( iso ) );
    fi;
    return iso;
end );

## ???? replace by ElementsInGenerators ???? ## 

##############################################################################
##
#M  GenerationOrder         elements of G generated as words in the generators
##
InstallMethod( GenerationOrder, "method for a group", true, [ IsGroup ], 0,
function( G )

    local oG, eG, ord, ngG, stgG, g, i, j, k, P, pos, n, x, y;

    stgG := StrongGeneratorsStabChain( StabChain( G ) );
    ngG := Length( stgG );
    oG := Size( G );
    eG := Elements( G );
    ord := 0 * [1..oG];
    ord[1] := 1;
    P := 0 * [1..oG];
    P[1] := [ 1, 0 ];
    for n in [1..ngG] do
        g := stgG[n];
        pos := Position( eG, g );
        P[pos] := [ 1, n ];
        ord[ n+1 ] := pos;
    od;
    n := ngG + 1;
    k := 2;
    while ( k < oG ) do
        i := ord[k];
        x := eG[i];
        for j in [1..ngG] do
            g := stgG[j];
            y := x * g;
            pos := Position( eG, y );
            if ( P[pos] = 0 ) then
                P[pos] := [ i, j ];
                n := n+1;
                ord[n] := pos;
            fi;
        od;
        k := k+1;
    od;
    SetGenerationPairs( G, P );
    return ord;
end );

##############################################################################
##
#M  CheckGenerationPairs             G.generationPairs, G.generationOrder ok ?
##
InstallMethod( CheckGenerationPairs, "method for a ", true, [ IsGroup ], 0,
function( G )

    local eG, oG, stgG, P, i, g, x;

    stgG := StrongGeneratorsStabChain( StabChain( G ) );
    oG := Size( G );
    eG := Elements( G );
    P := GenerationPairs( G );
    if ( P[1] <> [1,0] ) then
        return false;
    fi;
    for i in [2..oG] do
        x := eG[ P[i][1] ];
        g := stgG[ P[i][2] ];
        if ( x*g <> eG[i] ) then
            Info( InfoXMod, 2, x, " * ", g, " <> ", eG[i] );
            return false;
        fi;
    od;
    return true;
end );

##############################################################################
##
#M  TzCommutatorPair( <tietze>, <rel> )
##
InstallGlobalFunction( TzCommutatorPair, function( T, rel )

    local tietze, numgens, invs, numinvs, 
          x, ax, ix, px, y, ay, iy, py, pair;

    TzCheckRecord( T );
    tietze := T!.tietze;
    invs := tietze[TZ_INVERSES];
    numgens := tietze[TZ_NUMGENS];
    numinvs := 1 + 2 * numgens;
    if not ( IsList( rel ) and ( Length( rel ) = 4 ) ) then
        Print( "Second parameter must be a relator of length 4.\n" );
        return [ 0, 0 ];
    fi;
    x := rel[1];
    y := rel[2];
    ax := AbsInt( x );            
    ay := AbsInt( y );
    px := Position( invs, x );
    ix := invs[numinvs + 1 - px];
    py := Position( invs, y );
    iy := invs[numinvs + 1 - py];
    if ( ( rel[3] = ix ) and ( rel[4] = iy ) ) then
        pair := Set( [ ax, ay ] );
    else
        pair := [ 0, 0 ];
    fi;
    return pair;    
end );

##############################################################################
##
#M  TzPartition( <tietze> ) partition generators into commuting subsets
##
InstallGlobalFunction( TzPartition, function( T )

    local tietze, numgens, gens, partition, count, bipartite,
          invs, allgens, others, rels, numrels, lengths, numpart, numold,
          numinvs, i, j, k, x, ax, y, ay, z, r, lr, s, ok,
          commpairs, c, d, pair, commutators, comm1, comm2,
          left, right, rest, powerof, powers, freq, fnum, L, S;

    TzCheckRecord( T );
    tietze := T!.tietze;
    invs := tietze[TZ_INVERSES];
    rels := tietze[TZ_RELATORS];
    lengths := tietze[TZ_LENGTHS];
    numrels := tietze[TZ_NUMRELS];
    numgens := tietze[TZ_NUMGENS];
    numinvs := 1 + 2 * numgens;
    allgens := [1..numgens];
    left := allgens;
    partition := [ Set( allgens ) ];

    # phase1: find explicit commutators
    commpairs := [ ];
    for j in [1..numgens] do
        Add( commpairs, [ ] );
    od;
    commutators := 0 * [1..numrels];
    comm1 := 0;
    comm2 := 0;
    for j in [1..numrels] do
        if ( lengths[j] <> 4 ) then
            commutators[j] := false;
        else
            r := rels[j];
            pair := TzCommutatorPair( T, r );
            if ( pair <> [ 0, 0 ] ) then
                commutators[j] := true;
                comm2 := comm2 + 1;
                ax := pair[1];
                ay := pair[2];
                if ( ( ax in allgens ) and ( ay in allgens ) ) then
                    Add( commpairs[ax], ay );
                    Add( commpairs[ay], ax );
                fi;
            else
                commutators[j] := false;
            fi;
        fi;
    od;
    commpairs := List( commpairs, L -> Set( L ) );
    if ( ( TzOptions(T).printLevel > 1 ) and ( comm2 > 0 ) ) then
        Print( "There were ", comm2, " commutators found in phase 1\n" );
    fi;

    # phase2: find implicit commutators
    while ( comm1 < comm2 ) do
        comm1 := comm2;
        for j in [1..numrels] do 
            r := rels[j];
            lr := Length( r );
            if ( lr > 1 ) then
                freq := Collected( List( r, x -> AbsInt( x ) ) );
                fnum := Length( freq );
                for x in [1..fnum] do
                    L := freq[x];
                    if ( L[2] = 1 ) then
                        S := allgens;
                        for y in [1..fnum] do
                            if ( x <> y ) then
                                z := freq[y][1];
                                S := Intersection( S, commpairs[z] );
                            fi;
                        od;
                        y := L[1];
                        commpairs[y] := Union( commpairs[y], S );
                        for z in S do
                            commpairs[z] := Union( commpairs[z], [y] );
                        od;
                    fi;
                od;
            fi;
        od;
    comm2 := Sum( List( commpairs, L -> Length( L ) ) )/2;
    if ( ( TzOptions(T).printLevel > 1 ) and ( comm2 > comm1 ) ) then
        Print( "There were ", comm2 - comm1 );
        Print( " commutators found in phase 2\n" );
    fi;
    od;

    # phase3: separate into parts
    numpart := 1;
    numold := 0;
    while ( ( numold <> numpart ) and ( Length( partition[1] ) > 1 ) ) do
        if ( numpart > 1 ) then
            commpairs := List( commpairs, 
                                  L -> Difference( L, partition[2] ) );
        fi;
        gens := partition[1];
        others := Difference( allgens, gens );
        rest := partition{[ 2..Length(partition) ]};
        bipartite := false;
        left := commpairs[ gens[1] ];
        if ( left <> [ ] ) then
            right := Difference( gens, left );
            bipartite := true;
            for c in commpairs do
                d := Difference( c, left );
                if not ( c = [ ] ) then
                    if not ( ( c = left ) or ( d = right ) ) then
                        bipartite := false;
                    fi;
                fi;
            od;
        fi;
        if bipartite then
            # reorder the letters in each relator (but not the commutators)
            partition := Concatenation( [ left ], [ right ], rest );
            for j in [1..numrels] do
                if not commutators[j] then
                    r := rels[j];
                    s := [ ];
                    for x in r do
                        ax := AbsInt( x );
                        if ( ax in left ) then
                            Add( s, x );
                        fi;
                    od;
                    for y in r do
                        ay := AbsInt( y );
                        if ( ay in right ) then
                            Add( s, y );
                        fi;
                    od;
                    for x in r do
                        ax := AbsInt( x );
                        if ( ax in others ) then
                            Add( s, x );
                        fi;
                    od;
                    if ( r <> s ) then
                        rels[j] := s;
                        tietze[TZ_MODIFIED] := true;
                    fi;
                fi;
            od;
            if ( TzOptions(T).printLevel > 1 ) then
                Print( "#I factoring ", gens, " into " );
                Print( left, ", ", right, "\n" );
            fi;
        else
            left := [ ];
        fi;
    numold := numpart;
    numpart := Length( partition );
    od;
    T!.partition := partition;
    ## return partition;
end );

##############################################################################
##
#M  FactorsPresentation( <tietze> ) 
##
InstallGlobalFunction( FactorsPresentation, function( arg )

    local T, printlevel, tietze, gens, rels, numrels, numgens, invs, numinvs,
          lengths, flags, partition, part, numpart, i, j, k, rel, diff, F,
          commutator, fx, fy, pair, factor, fac, len, chosen, posn,
          subrels, subnumi, subtot, sublen, subflags, subtriv, subT;

    T := arg[1];
    TzCheckRecord( T );
    # check that the second argument is an integer
    printlevel := 1;
    if ( Length( arg ) = 2 ) then
        printlevel := arg[2];
    fi;
    if not IsInt( printlevel ) then
        Error( "second argument must be an integer" );
    fi;

    TzPartition( T );
    partition := T!.partition;
    if ( Length( partition ) = 1 ) then
        return [ T ];
    fi;
    tietze := T!.tietze;
    invs := tietze[TZ_INVERSES];
    numgens := tietze[TZ_NUMGENS];
    numinvs := 1 + 2 * numgens;
    gens := T!.generators;         ## ??????
    rels := tietze[TZ_RELATORS];
    lengths := tietze[TZ_LENGTHS];
    flags := tietze[TZ_FLAGS];
    numrels := tietze[TZ_NUMRELS];
    numpart := Length( partition );
    factor := 0 * [1..numgens ];
    for i in [1..numpart] do
        part := partition[i];
        for j in [1..Length(part)] do
            factor[ part[j] ] := i;
        od;
    od;
    chosen := List( [1..numpart], i -> [ ] );
    for j in [1..numrels] do
        rel := rels[j];
        len := lengths[j];
        commutator := false;
        if ( len = 4 ) then
            pair := TzCommutatorPair( T, rel );
            if ( pair <> [ 0, 0 ] ) then
                fx := factor[ pair[1] ];
                fy := factor[ pair[2] ];
                commutator := ( fx <> fy );
            fi;
        fi;
        if not commutator then
            fac := List( rel, i -> factor[ AbsInt( i ) ] );
            # check that fac is increasing
            for i in [2..len] do
                if ( fac[i] < fac[i-1] ) then
                    Print( "relator = ", rel, "\n" );
                    Error( "factors mixed in relator" );
                fi;
            od;
            for i in Set( fac ) do
                Add( chosen[i], j );
            od;           
        fi;
    od;
    # construct Tietze records for each factor
    subflags := 0 * [1..numpart];
    F := List( [1..numpart], i -> ShallowCopy( T ) );
    for i in [1..numpart] do
        subrels := [ ];
        for j in chosen[i] do
            rel := rels[j];
            len := lengths[j];
            fac := List( rel, k -> factor[ AbsInt( k ) ] );
            posn := Filtered( [1..len], k -> fac[k]=i );
            Add( subrels, rel{posn} );
        od;
        sublen := List( subrels, L -> Length( L ) );
        subflags := List( chosen[i], k -> flags[k] );
        F[i].printLevel := printlevel;
        subT := F[i].tietze;
        diff := Difference( [1..numgens], partition[i] );
        subtriv := List( diff, x -> [x] );
        subrels := Concatenation( subtriv, subrels );
        sublen := Concatenation( List( subtriv, x -> 1 ), sublen );
        subflags := Concatenation( List( subtriv, x -> 0 ), subflags );
        subnumi := Length( subrels );
        subtot := 0;
        for j in [1..subnumi] do
            subtot := subtot + sublen[j];
        od;
        subT[TZ_TOTAL] := subtot;
        subT[TZ_RELATORS] := subrels;
        subT[TZ_NUMRELS] := subnumi;
        subT[TZ_LENGTHS] := sublen;
        subT[TZ_FLAGS] := subflags;
        subT[TZ_STATUS] := [ subT[1], subT[2], subT[3] ];
    od;
    return F;
end );

##############################################################################
##
#M  IsomorphismFpInfo( <G> ) . . . . . . . . . . . . isomorphic fp-group for G
##
InstallOtherMethod( IsomorphismFpInfo, "for a group", true, [ IsGroup ], 0,
function( grp )

    local iso, inv, fp, mgi;

    iso := IsomorphismFpGroup( grp );
    fp := ImagesSource( iso );
    mgi := MappingGeneratorsImages( iso );
    inv := GroupHomomorphismByImagesNC( fp, grp, mgi[2], mgi[1] );
    if IsPermGroup( grp ) then
        SetIsomorphismPermInfo( fp,
            rec( perm := grp, g2perm := inv, perm2g := iso ) );
    fi;
    SetIsomorphismFpInfo( grp, 
        rec( fp := fp, g2fp := iso, fp2g := inv ) );
    return rec( fp := fp, g2fp := iso, fp2g := inv );
end );

##############################################################################
##
#M  IsomorphismPermInfo( <G> ) . . . . . . . . . . isomorphic perm group for G
##
InstallOtherMethod( IsomorphismPermInfo, "for a group", true, [ IsGroup ], 0,
function( grp )

    local iso, inv, perm, mgi;

    iso := IsomorphismPermGroup( grp );
    perm := ImagesSource( iso );
    mgi := MappingGeneratorsImages( iso );
    inv := GroupHomomorphismByImagesNC( perm, grp, mgi[2], mgi[1] );
    if IsFpGroup( grp ) then
        SetIsomorphismFpInfo( perm,
            rec( fp := grp, g2fp := inv, fp2g := iso ) );
    fi;
    SetIsomorphismPermInfo( grp,
        rec( perm := perm, g2perm := iso, perm2g := inv ) );
    return rec( perm := perm, g2perm := iso, perm2g := inv );
end );

##############################################################################
##
#M  IsomorphismPcInfo( <G> ) . . . . . . . . . . . . isomorphic pc group for G
##
InstallOtherMethod( IsomorphismPcInfo, "for a group", true, [ IsGroup ], 0,
function( grp )

    local iso, inv, pc, mgi;

    iso := IsomorphismPcGroup( grp );
    if ( iso = fail ) then 
        return fail; 
    fi; 
    pc := ImagesSource( iso );
    mgi := MappingGeneratorsImages( iso );
    inv := GroupHomomorphismByImages( pc, grp, mgi[2], mgi[1] );
    if IsFpGroup( grp ) then
        SetIsomorphismFpInfo( pc,
            rec( fp := grp, g2fp := inv, fp2g := iso ) ); 
    elif IsPermGroup( grp ) then 
        SetIsomorphismPermInfo( pc, 
            rec( perm := grp, g2perm := inv, pc2g := iso ) ); 
    fi;
    SetIsomorphismPcInfo( grp,
        rec( pc := pc, g2pc := iso, pc2g := inv ) );
    return rec( pc := pc, g2pc := iso, pc2g := inv );
end );

##############################################################################
##
#M  IsomorphismPermOrPcInfo( <G> ) . . . . . isomorphic perm or pc group for G
##
InstallOtherMethod( IsomorphismPermOrPcInfo, "for a group", true, 
    [ IsGroup ], 0,
function( grp )

    local id, info1, info2, iso1, iso2, iso, inv1, inv2, inv, perm, pc, ispc; 

    if IsPermGroup( grp ) then 
        return IsomorphismPcInfo( grp );
    elif IsPcGroup( grp ) then 
        return IsomorphismPermInfo( grp ); 
    else 
        info1 := IsomorphismPermInfo( grp ); 
        perm := info1!.perm; 
        iso1 := info1!.g2perm; 
        inv1 := info1!.perm2g; 
        info2 := IsomorphismPcInfo( perm ); 
        ispc := not ( info2 = fail ); 
        if ispc then 
            pc := info2!.pc; 
            iso2 := info2!.g2pc; 
            iso := iso1 * iso2; 
            inv2 := info2!.pc2g; 
            inv := inv2 * inv1; 
            if IsFpGroup( grp ) then
                SetIsomorphismFpInfo( pc,
                    rec( fp := grp, g2fp := inv, fp2g := iso ) ); 
            fi; 
            return rec( type := "pc", pc := pc, g2pc := iso, pc2g := inv );
        else  ## return the perm info 
            return rec( type := "perm", perm := perm, 
                        g2perm := iso1, perm2g := inv1 ); 
        fi; 
    fi; 
end );

##############################################################################
##
#M  IsomorphismPermObject( <obj> ) 
#M  IsomorphismFpObject( <obj> ) 
#M  IsomorphismPcObject( <obj> ) 
##
InstallGlobalFunction( IsomorphismPermObject, function( obj )
    if IsGroup( obj ) then
        return IsomorphismPermGroup( obj );
    elif ( HasIsPreXMod( obj ) and IsPreXMod( obj ) ) or 
         ( HasIsPreCat1Group( obj ) and IsPreCat1Group( obj ) ) then 
        return IsomorphismPerm2DimensionalGroup( obj );
    elif HasHigherDimension( obj ) then 
        Error( "IsomorphismPerm3DimensionObject etc not yet written" ); 
    else
        return fail;
    fi;
end );

InstallGlobalFunction( IsomorphismFpObject, function( obj )
    if IsGroup( obj ) then
        return IsomorphismFpGroup( obj );
    elif ( HasIsPreXMod( obj ) and IsPreXMod( obj ) ) or 
         ( HasIsPreCat1Group( obj ) and IsPreCat1Group( obj ) ) then
        return IsomorphismFp2DimensionalGroup( obj );
    elif HasHigherDimension( obj ) then 
        Error( "IsomorphismFp3DimensionObject etc not yet written" ); 
    else
        return fail;
    fi;
end );

InstallGlobalFunction( IsomorphismPcObject, function( obj )
    if IsGroup( obj ) then
        return IsomorphismPcGroup( obj );
    elif ( HasIsPreXMod( obj ) and IsPreXMod( obj ) ) or 
         ( HasIsPreCat1Group( obj ) and IsPreCat1Group( obj ) ) then
        return IsomorphismPc2DimensionalGroup( obj );
    elif HasHigherDimension( obj ) then 
        Error( "IsomorphismPc3DimensionObject etc not yet written" ); 
    else
        return fail;
    fi;
end );

##############################################################################
##
#M  MetacyclicGroup
##
InstallMethod( MetacyclicGroup, "for three positive integers", true,
    [ IsPosInt, IsPosInt, IsPosInt ], 0,
function( m, n, l )

    local f, x, y, rels, fp, iso;

    if not ( RemInt( l^m, n ) = 1 ) then
        return fail;
    fi;
    f := FreeGroup( 2 );
    x := GeneratorsOfGroup( f )[1];
    y := GeneratorsOfGroup( f )[2];
    rels := [ x^m, y^n, x^(-1)*y*x*y^(-l) ];
    fp := f/rels;
    iso := IsomorphismPermGroup( fp );
    return Image( iso );
end );

##############################################################################
##  added  17/07/07
##############################################################################
##
#M  AutomorphismsFixingSubgroups . . . . . for a group and a list of subgroups
##
InstallMethod( AutomorphismsFixingSubgroups, "for a group and subgroup list", 
    true, [ IsGroup, IsList ], 0,
function( G, H )

    local autG, id, genautG, numautG, L, a, i, F, gensub, subG, 
          stop, reps, numrep, r, found, ok; 

    if not ForAll( H, J -> IsSubgroup( G, J ) ) then 
        Error( "H is not a list of subgroups of G" );
    fi;
    autG := AutomorphismGroup( G ); 
    id := TrivialSubgroup( G ); 
    if ForAll( H, J -> ( (J=G) or (J=id) ) ) then 
        return autG; 
    fi;
    genautG := GeneratorsOfGroup( autG ); 
    numautG := Length( genautG ); 
    L := ListWithIdenticalEntries( numautG, 0 );
    for i in [1..numautG] do 
        a := genautG[i]; 
        L[i] := ForAll( H, J -> 
           ForAll( List(GeneratorsOfGroup(J),j -> j^a in J), x -> x=true) ); 
    od;
    if ForAll( L, l -> l ) then 
        return autG;
    fi;
    F := Filtered( [1..numautG], x -> L[x] ); 
    Info( InfoXMod, 2, "L,F = ", L, F );
    gensub := List( F, f -> genautG[f] );
    stop := false; 
    subG :=  Subgroup( autG, gensub ); 
    while not stop do 
        stop := true; 
        reps := List( RightCosets( autG, subG ), c -> Representative(c) ); 
        numrep := Length( reps ); 
        i := 1; 
        found := false; 
        while ( not found and ( i < numrep ) ) do 
            i := i+1; 
            r := reps[i]; 
            ok := ForAll( H, J -> 
                  ForAll( List(GeneratorsOfGroup(J),j->j^r in J), x->x=true) );
            if ok then 
                found := true; 
                stop := false; 
                Add( gensub, r );
                subG :=  Subgroup( autG, gensub ); 
            fi; 
        od; 
    od; 
    return subG;
end );

#############################################################################
##
#E  util.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here