Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## may07.tst gap> g18gens := [ (1,2,3), (4,5,6), (2,3)(5,6) ];; gap> s3agens := [ (7,8,9), (8,9) ];; gap> g18 := Group( g18gens );; SetName( g18, "g18" );; gap> g18 := Group( g18gens );; SetName( g18, "g18" );; gap> s3a := Group( s3agens );; SetName( s3a, "s3a" );; gap> t := GroupHomomorphismByImages(g18,s3a,g18gens,[(7,8,9),(),(8,9)]);; gap> h := GroupHomomorphismByImages(g18,s3a,g18gens,[(7,8,9),(7,8,9),(8,9)]);; gap> e := GroupHomomorphismByImages(s3a,g18,s3agens,[(1,2,3),(2,3)(5,6)]);; gap> C18 := Cat1Group( t, h, e );; gap> t2 := GroupHomomorphismByImages(g18,s3a,g18gens,[(),(7,8,9),(8,9)]);; gap> e2 := GroupHomomorphismByImages(s3a,g18,s3agens,[(4,5,6),(2,3)(5,6)]);; gap> B18 := Cat1Group( t2, h, e2 );; gap> imgamma := [ (4,5,6), (1,2,3), (2,3)(5,6) ];; gap> gamma := GroupHomomorphismByImages( g18, g18, g18gens, imgamma );; gap> rho := IdentityMapping( s3a );; gap> mor := Cat1Morphism( C18, B18, gamma, rho );; gap> Display( mor );; Morphism of cat1-groups :- : Source = [g18=>s3a] with generating sets: [ (1,2,3), (4,5,6), (2,3)(5,6) ] [ (7,8,9), (8,9) ] : Range = [g18=>s3a] with generating sets: [ (1,2,3), (4,5,6), (2,3)(5,6) ] [ (7,8,9), (8,9) ] : Source Homomorphism maps source generators to: [ (4,5,6), (1,2,3), (2,3)(5,6) ] : Range Homomorphism maps range generators to: [ (7,8,9), (8,9) ]