Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W gp2ind.tst XMOD test file Chris Wensley #W & Murat Alp #Y Copyright (C) 2001-2017, Chris Wensley et al, #Y School of Computer Science, Bangor University, U.K. ## ## gap> START_TEST( "XMod package: gp2ind.tst" ); gap> saved_infolevel_xmod := InfoLevel( InfoXMod );; gap> SetInfoLevel( InfoXMod, 0 );; gap> saved_infolevel_groupoids := InfoLevel( InfoGroupoids );; gap> SetInfoLevel( InfoGroupoids, 0 );; ## make independent of gp2obj.tst gap> s4 := Group( (1,2), (2,3), (3,4) );; gap> a4 := Subgroup( s4, [ (1,2,3), (2,3,4) ] );; gap> SetName(s4,"s4"); SetName(a4,"a4"); gap> b1 := (11,12,13,14,15,16,17,18);; gap> b2 := (12,18)(13,17)(14,16);; gap> d16 := Group( b1, b2 );; gap> SetName( d16, "d16" ); ## Chapter 7 ## Section 7.1.1 gap> s4gens := GeneratorsOfGroup( s4 ); [ (1,2), (2,3), (3,4) ] gap> a4gens := GeneratorsOfGroup( a4 ); [ (1,2,3), (2,3,4) ] gap> s3b := Group( (5,6),(6,7) );; SetName( s3b, "s3b" ); gap> epi := GroupHomomorphismByImages( s4, s3b, s4gens, [(5,6),(6,7),(5,6)] );; gap> X4 := XModByNormalSubgroup( s4, a4 );; gap> indX4 := SurjectiveInducedXMod( X4, epi ); [a4/ker->s3b] gap> Display( indX4 ); Crossed module [a4/ker->s3b] :- : Source group a4/ker has generators: [ (1,3,2), (1,2,3) ] : Range group s3b has generators: [ (5,6), (6,7) ] : Boundary homomorphism maps source generators to: [ (5,6,7), (5,7,6) ] : Action homomorphism maps range generators to automorphisms: (5,6) --> { source gens --> [ (1,2,3), (1,3,2) ] } (6,7) --> { source gens --> [ (1,2,3), (1,3,2) ] } These 2 automorphisms generate the group of automorphisms. gap> morX4 := MorphismOfInducedXMod( indX4 ); [[a4->s4] => [a4/ker->s3b]] gap> d8 := Subgroup( d16, [ b1^2, b2 ] ); SetName( d8, "d8" ); Group([ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ]) gap> c4 := Subgroup( d8, [ b1^2 ] ); SetName( c4, "c4" ); Group([ (11,13,15,17)(12,14,16,18) ]) gap> Y16 := XModByNormalSubgroup( d16, d8 ); [d8->d16] gap> Y8 := SubXMod( Y16, c4, d8 ); [c4->d8] gap> inc8 := InclusionMorphism2DimensionalDomains( Y16, Y8 ); [[c4->d8] => [d8->d16]] gap> incd8 := RangeHom( inc8 );; gap> indY8 := InducedXMod( Y8, incd8 ); #I induced group has Size: 16 #I factor 2 is abelian with invariants: [ 4, 4 ] i*([c4->d8]) gap> morY8 := MorphismOfInducedXMod( indY8 ); [[c4->d8] => i*([c4->d8])] gap> s3c := Subgroup( s4, [ (2,3), (3,4) ] );; gap> SetName( s3c, "s3c" ); gap> indXs3c := InducedXMod( s4, s3c, s3c ); #I induced group has Size: 48 i*([s3c->s3c]) gap> StructureDescription( indXs3c ); [ "GL(2,3)", "S4" ] gap> SetInfoLevel( InfoXMod, saved_infolevel_xmod );; gap> SetInfoLevel( InfoGroupoids, saved_infolevel_groupoids );; gap> STOP_TEST( "gp2ind.tst", 10000 ); ############################################################################# ## #E gp2ind.tst . . . . . . . . . . . . . . . . . . . . . . . . . . ends here