Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W gp2map.tst XMOD test file Chris Wensley #W & Murat Alp #Y Copyright (C) 2001-2017, Chris Wensley et al, #Y School of Computer Science, Bangor University, U.K. ## ## gap> START_TEST( "XMod package: gp2map.tst" ); gap> saved_infolevel_xmod := InfoLevel( InfoXMod );; gap> SetInfoLevel( InfoXMod, 0 );; gap> saved_infolevel_groupoids := InfoLevel( InfoGroupoids );; gap> SetInfoLevel( InfoGroupoids, 0 );; ## make this test independent of gp2obj.tst gap> c5 := Group( (5,6,7,8,9) );; gap> SetName( c5, "c5" ); gap> X1 := XModByAutomorphismGroup( c5 );; gap> G2 := SmallGroup( 288, 956 );; gap> SetName( G2, "G2" ); gap> d12 := DihedralGroup( 12 );; gap> SetName( d12, "d12" ); gap> a1 := d12.1;; a2 := d12.2;; a3 := d12.3;; a0 := One( d12 );; gap> gensG2 := GeneratorsOfGroup( G2 );; gap> t2 := GroupHomomorphismByImages( G2, d12, gensG2, > [ a0, a1*a3, a2*a3, a0, a0, a3, a0 ] );; gap> h2 := GroupHomomorphismByImages( G2, d12, gensG2, > [ a1*a2*a3, a0, a0, a2*a3, a0, a0, a3^2 ] );; gap> e2 := GroupHomomorphismByImages( d12, G2, [a1,a2,a3], > [ G2.1*G2.2*G2.4*G2.6^2, G2.3*G2.4*G2.6^2*G2.7, G2.6*G2.7^2 ] );; gap> C2 := PreCat1GroupByTailHeadEmbedding( t2, h2, e2 );; gap> X2 := XModOfCat1Group( C2 );; ## Chapter 3 ## Section 3.2.3 gap> sigma1 := GroupHomomorphismByImages(c5,c5,[(5,6,7,8,9)],[(5,9,8,7,6)] );; gap> rho1 := IdentityMapping( Range(X1) );; gap> mor1 := XModMorphism( X1, X1, sigma1, rho1 ); [[c5->PAut(c5)] => [c5->PAut(c5)]] gap> Display( mor1 ); Morphism of crossed modules :- : Source = [c5->PAut(c5)] with generating sets: [ (5,6,7,8,9) ] [ (1,2,3,4) ] : Range = Source : Source Homomorphism maps source generators to: [ (5,9,8,7,6) ] : Range Homomorphism maps range generators to: [ (1,2,3,4) ] gap> IsAutomorphism2DimensionalDomain(mor1); true gap> Order(mor1); 2 gap> RepresentationsOfObject(mor1); [ "IsComponentObjectRep", "IsAttributeStoringRep", "Is2DimensionalMappingRep" ] gap> KnownPropertiesOfObject(mor1); [ "CanEasilyCompareElements", "CanEasilySortElements", "IsTotal", "IsSingleValued", "IsInjective", "IsSurjective", "RespectsMultiplication", "IsPreXModMorphism", "IsXModMorphism", "IsEndomorphism2DimensionalDomain", "IsAutomorphism2DimensionalDomain" ] gap> KnownAttributesOfObject(mor1); [ "Name", "Order", "Range", "Source", "SourceHom", "RangeHom" ] ## Section 3.3.1 gap> iso2 := IsomorphismPerm2DimensionalGroup( C2 ); [[G2=>d12] => [..]] ## Section 3.4.1 gap> H2 := Subgroup(G2, [G2.3,G2.4,G2.6,G2.7] ); SetName( H2, "H2" ); Group([ f3, f4, f6, f7 ]) gap> c6 := Subgroup( d12, [a2,a3] ); SetName( c6, "c6" ); Group([ f2, f3 ]) gap> SC2 := Sub2DimensionalGroup( C2, H2, c6 ); [H2=>c6] gap> IsCat1Group( SC2 ); true gap> inc2 := InclusionMorphism2DimensionalDomains( C2, SC2 ); [[H2=>c6] => [G2=>d12]] gap> CompositionMorphism( iso2, inc2 ); [[H2=>c6] => Pc[G2=>d12]] ## Section 3.4.2 gap> c2 := Group( (19,20) ); Group([ (19,20) ]) gap> X0 := XModByNormalSubgroup( c2, c2 ); SetName( X0, "X0" ); [Group( [ (19,20) ] )->Group( [ (19,20) ] )] gap> SX2 := Source( X2 );; gap> genSX2 := GeneratorsOfGroup( SX2 ); [ f1, f4, f5, f7 ] gap> sigma0 := GroupHomomorphismByImages(SX2,c2,genSX2,[(19,20),(),(),()]); [ f1, f4, f5, f7 ] -> [ (19,20), (), (), () ] gap> rho0 := GroupHomomorphismByImages(d12,c2,[a1,a2,a3],[(19,20),(),()]); [ f1, f2, f3 ] -> [ (19,20), (), () ] gap> mor0 := XModMorphism( X2, X0, sigma0, rho0 );; gap> K0 := Kernel( mor0 );; gap> StructureDescription( K0 ); [ "C12", "C6" ] gap> SetInfoLevel( InfoXMod, saved_infolevel_xmod );; gap> SetInfoLevel( InfoGroupoids, saved_infolevel_groupoids );; gap> STOP_TEST( "gp2map.tst", 10000 ); ############################################################################# ## #E gp2map.tst . . . . . . . . . . . . . . . . . . . . . . . . . . ends here