Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346gap> G:=AlmostCrystallographicPcpDim4("013",[8,0,1,0,1,0]); Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ] gap> IsTorsionFree(G); true gap> G:=AlmostCrystallographicPcpDim4("013",[9,0,1,0,1,0]); Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ] gap> IsTorsionFree(G); false gap> G:=AlmostCrystallographicPcpDim4("013",[10,0,2,0,1,0]); Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ] gap> IsTorsionFree(G); false gap> G:=AlmostCrystallographicPcpDim4("013",[10,0,3,0,1,9]); Pcp-group with orders [ 2, 2, 0, 0, 0, 0 ] gap> IsTorsionFree(G); true gap> G:=AlmostCrystallographicPcpGroup(4, "085", false); Pcp group with orders [ 2, 4, 0, 0, 0, 0 ] gap> GroupGeneratedByd:=Subgroup(G, [G.6] ); Pcp group with orders [ 0 ] gap> Q:=G/GroupGeneratedByd; Pcp group with orders [ 2, 4, 0, 0, 0 ] gap> action:=List( Pcp(Q), x -> [[1]] ); [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ] gap> C:=CRRecordByMats( Q, action);; gap> TwoCohomologyCR( C ).factor.rels; [ 2, 2, 4, 0 ] gap> G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,0] ); Pcp group with orders [ 2, 6, 0, 0, 0 ] gap> projection := NaturalHomomorphismOnHolonomyGroup( G ); [ g1, g2, g3, g4, g5 ] -> [ g1, g2, identity, identity, identity ] gap> F := HolonomyGroup( G ); Pcp group with orders [ 2, 6 ] gap> IPprimeD6 := Subgroup( F , [F.2^2] ); Pcp group with orders [ 3 ] gap> K := PreImage( projection, IPprimeD6 ); Pcp group with orders [ 3, 0, 0, 0 ] gap> PrintPcpPresentation( K ); pcp presentation on generators [ g2^2, g3, g4, g5 ] g2^2 ^ 3 = identity g3 ^ g2^2 = g3^-1*g4^-1 g3 ^ g2^2^-1 = g4*g5^-2 g4 ^ g2^2 = g3*g5^2 g4 ^ g2^2^-1 = g3^-1*g4^-1*g5^2 g4 ^ g3 = g4*g5^2 g4 ^ g3^-1 = g4*g5^-2 gap> Gamma3K := CommutatorSubgroup( K, CommutatorSubgroup( K, K )); Pcp group with orders [ 0, 0, 0 ] gap> quotient := G/Gamma3K; Pcp group with orders [ 2, 6, 3, 3, 2 ] gap> S := SylowSubgroup( quotient, 3); Pcp group with orders [ 3, 3, 3 ] gap> N := NormalClosure( quotient, S); Pcp group with orders [ 3, 3, 3 ] gap> localization := quotient/N; Pcp group with orders [ 2, 2, 2 ] gap> PrintPcpPresentation( localization ); pcp presentation on generators [ g1, g2, g3 ] g1 ^ 2 = identity g2 ^ 2 = identity g3 ^ 2 = identity gap> G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,1]);; gap> projection := NaturalHomomorphismOnHolonomyGroup( G );; gap> F := HolonomyGroup( G );; gap> IPprimeD6 := Subgroup( F , [F.2^2] );; gap> K := PreImage( projection, IPprimeD6 );; gap> Gamma3K := CommutatorSubgroup( K, CommutatorSubgroup( K, K ));; gap> quotient := G/Gamma3K;; gap> S := SylowSubgroup( quotient, 3);; gap> N := NormalClosure( quotient, S);; gap> localization := quotient/N; Pcp group with orders [ 2, 2, 2 ] gap> PrintPcpPresentation( localization ); pcp presentation on generators [ g1, g2, g3 ] g1 ^ 2 = identity g2 ^ 2 = g3 g3 ^ 2 = identity g2 ^ g1 = g2*g3 g2 ^ g1^-1 = g2*g3