Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346# this needs RadiRoot to be loaded gap> START_TEST("Factorisation of polynomials using PARI/GP"); # some splitting fields gap> pol := UnivariatePolynomial( Rationals, [ -1, 0, 0, 0, 1, 0, 1 ] );; gap> SplittingField( pol ); <algebraic extension over the Rationals of degree 24> gap> pol := UnivariatePolynomial( Rationals, [ 4, -1, 0, 6, -1, -2, 2, 1 ] );; gap> SplittingField( pol ); <algebraic extension over the Rationals of degree 42> gap> pol := UnivariatePolynomial( Rationals, [ 4, 0, 4, 0, -3, 0, -1, 0, 1 ] );; gap> SplittingField( pol ); <algebraic extension over the Rationals of degree 24> gap> pol := UnivariatePolynomial(Rationals, > [ -3, 1, -1, 2, 1, 3, -2, -1, 0, 1 ]);; gap> SplittingField( pol ); <algebraic extension over the Rationals of degree 54> gap> pol := UnivariatePolynomial(Rationals, > [ 47, 0, 103, 0, 41, 0, 7, 0, -2, 0, 1 ]);; gap> SplittingField( pol ); <algebraic extension over the Rationals of degree 10> # example from email to Bill Allombert (10/05/11) gap> pol := UnivariatePolynomial( Rationals, [ 1, 2, 2, 2, 2, 1, 1 ] ); x_1^6+x_1^5+2*x_1^4+2*x_1^3+2*x_1^2+2*x_1+1 gap> f := UnivariatePolynomial( Rationals, [ 1, 1, 1 ] ); x_1^2+x_1+1 gap> K := SplittingField( pol ); <algebraic extension over the Rationals of degree 48> gap> FactorsPolynomialAlgExt( K, f ); [ x_1^2+x_1+!1 ] # example from Bill Allombert (10/05/11) gap> pol := UnivariatePolynomial( Rationals, [ 20736, 0, 4147200, 0, 60632064, > 0, 347286528, 0, 1078555392, 0, 2069549568, 0, 2613917952, 0, 2241209088, 0, > 1318874976, 0, 530669952, 0, 143684928, 0, 25510464, 0, 2872752, 0, 195936, 0, > 7536, 0, 144, 0, 1 ] );; gap> L := FieldByPolynomial( pol ); <algebraic extension over the Rationals of degree 32> gap> FactorsPolynomialAlgExt( L, pol ); [ x_1+(-a), x_1+a, x_1+(-6288932627/383229886464*a^31-676177676227/287422414848*a^29-7022199070\ 4813/574844829696*a^27-8348368690499/2661318656*a^25-1441172196882701/31935823\ 872*a^23-3110641133376895/7983955968*a^21-33644661220339553/15967911936*a^19-4\ 4007416662454225/5987966976*a^17-134869088235956483/7983955968*a^15-1718798162\ 7387251/665329664*a^13-104251404159613535/3991977984*a^11-8461693903983139/498\ 997248*a^9-4412765111459797/665329664*a^7-226547531784319/166332416*a^5-343306\ 15506473/332664832*a^3-22369886387/41583104*a), x_1+(-2623944199/287422414848*a^31-752270973133/574844829696*a^29-1084917582\ 523/15967911936*a^27-501373355503273/287422414848*a^25-600865108225135/2395186\ 7904*a^23-3456869752501177/15967911936*a^21-14012209706995975/11975933952*a^19\ -97667468483551439/23951867904*a^17-18687613575472417/1995988992*a^15-57083251\ 530607471/3991977984*a^13-4801094662490959/332664832*a^11-6222754679697441/665\ 329664*a^9-606939117179801/166332416*a^7-248383159824721/332664832*a^5-4670807\ 290457/83166208*a^3-45215963389/166332416*a), x_1+(-4042744285/574844829696*a^31-32187975751/31935823872*a^29-187930960382\ 9/35927801856*a^27-6027429086209/4490975232*a^25-102640701975317/5322637312*a^\ 23-3980858518472945/23951867904*a^21-3579804831537031/3991977984*a^19-23344372\ 34591057/748495872*a^17-9507239943635953/1330659328*a^15-7243398225169135/6653\ 29664*a^13-1823743331458969/166332416*a^11-884899113733991/124749312*a^9-91978\ 1706076915/332664832*a^7-94151627687003/166332416*a^5-3557954556085/83166208*a\ ^3-2410591001/10395776*a), x_1+(-7880365675/1149689659392*a^31-188274995653/191614943232*a^29-293260045\ 19411/574844829696*a^27-125492280368065/95807471616*a^25-1804896180880669/9580\ 7471616*a^23-7788995206315909/47903735808*a^21-4678435793811693/5322637312*a^1\ 9-73397761769467337/23951867904*a^17-18735311636618035/2661318656*a^15-4295498\ 8154550349/3991977984*a^13-43399863656624497/3991977984*a^11-4694298451896531/\ 665329664*a^9-1834984794705831/665329664*a^7-188249142918295/332664832*a^5-142\ 21659697487/332664832*a^3-33912557555/166332416*a), x_1+(-316262345/47903735808*a^31-544230109085/574844829696*a^29-294523748095\ /5987966976*a^27-13456452507369/10645274624*a^25-218036972525605/11975933952*a\ ^23-7542152297609335/47903735808*a^21-851557088264065/997994496*a^19-794081458\ 3462665/2661318656*a^17-6863185088448505/997994496*a^15-42093757889236855/3991\ 977984*a^13-666391408259905/62374656*a^11-13870926281619145/1995988992*a^9-226\ 342997006495/83166208*a^7-186214113220445/332664832*a^5-887160368835/20791552*\ a^3-41420818635/166332416*a), x_1+(-2387137355/383229886464*a^31-21379846115/23951867904*a^29-266252046601\ 91/574844829696*a^27-18971202107023/15967911936*a^25-1634798202318467/95807471\ 616*a^23-586712369596199/3991977984*a^21-37953053904796037/47903735808*a^19-32\ 957719683582179/11975933952*a^17-50248197399127811/7983955968*a^15-23874012896\ 00347/249498624*a^13-38361960915954509/3991977984*a^11-6182680666015153/997994\ 496*a^9-1599684611167905/665329664*a^7-40727317600665/83166208*a^5-12224183282\ 407/332664832*a^3-14461675125/83166208*a), x_1+(-5547064829/1149689659392*a^31-198762412763/287422414848*a^29-687805206\ 0577/191614943232*a^27-66195296164295/71855603712*a^25-422860607398109/3193582\ 3872*a^23-2734647045526303/23951867904*a^21-29525685083133233/47903735808*a^19\ -1070262029839043/498997248*a^17-39246102262072279/7983955968*a^15-14954029348\ 555949/1995988992*a^13-30121333647352985/3991977984*a^11-811853901110489/16633\ 2416*a^9-1265993859283069/665329664*a^7-64933325713737/166332416*a^5-994739332\ 6731/332664832*a^3-4354897295/20791552*a), x_1+(-1493492281/383229886464*a^31-160514320315/287422414848*a^29-1850898333\ 073/63871647744*a^27-106825758746347/143711207424*a^25-1022851334391265/958074\ 71616*a^23-2202616032440041/23951867904*a^21-2638673511500635/5322637312*a^19-\ 20623565958794069/11975933952*a^17-31445530093829441/7983955968*a^15-119534865\ 23818433/1995988992*a^13-24012406658831515/3991977984*a^11-3870740056784281/99\ 7994496*a^9-1001785753542603/665329664*a^7-51027717583475/166332416*a^5-765396\ 7570241/332664832*a^3-8156784591/83166208*a), x_1+(-1176118997/383229886464*a^31-42103685309/95807471616*a^29-145463013063\ 5/63871647744*a^27-5236653866203/8981950464*a^25-799848997639121/95807471616*a\ ^23-1715063680384769/23951867904*a^21-18384601179268157/47903735808*a^19-39619\ 96504288151/2993983488*a^17-23952780632541893/7983955968*a^15-3005369284948071\ /665329664*a^13-5973296703083771/1330659328*a^11-29747379769841/10395776*a^9-7\ 29603726117555/665329664*a^7-36518045255243/166332416*a^5-5255833154455/332664\ 832*a^3-169535573/20791552*a), x_1+(-487272313/287422414848*a^31-1289482523/5322637312*a^29-56183079677/449\ 0975232*a^27-5085577912535/15967911936*a^25-36112639728673/7983955968*a^23-318\ 9272954073/83166208*a^21-201995692295219/997994496*a^19-8201495758804571/11975\ 933952*a^17-1011557716960833/665329664*a^15-2236739767280741/997994496*a^13-17\ 7408973720/81217*a^11-1367869689663401/997994496*a^9-86490266015385/166332416*\ a^7-4321493733575/41583104*a^5-158216669023/20791552*a^3-1969866461/83166208*a\ ), x_1+(-1735709399/1149689659392*a^31-1291280693/5987966976*a^29-6396264585293\ /574844829696*a^27-2541087861115/8981950464*a^25-42685514533805/10645274624*a^\ 23-704635388807/20791552*a^21-8528391072853951/47903735808*a^19-59698260155388\ 5/997994496*a^17-10498421268613349/7983955968*a^15-119301033109277/62374656*a^\ 13-2438287006999709/1330659328*a^11-140483039438057/124749312*a^9-277904882474\ 087/665329664*a^7-852607404283/10395776*a^5-2022868142885/332664832*a^3-305498\ 175/20791552*a), x_1+(-52845581/47903735808*a^31-30349276577/191614943232*a^29-2370092990123/\ 287422414848*a^27-20371368115427/95807471616*a^25-73720217065361/23951867904*a\ ^23-1284352243605749/47903735808*a^21-3515944432549699/23951867904*a^19-124647\ 74961780559/23951867904*a^17-304582431030689/249498624*a^15-7638974691417553/3\ 991977984*a^13-3976728128662661/1995988992*a^11-891742205717041/665329664*a^9-\ 91079389663493/166332416*a^7-39686017807615/332664832*a^5-1693131733677/166332\ 416*a^3-26987157165/166332416*a), x_1+(-95357711/95807471616*a^31-20543292065/143711207424*a^29-2140273073569/\ 287422414848*a^27-13808606859559/71855603712*a^25-33352760105135/11975933952*a\ ^23-24246999544157/997994496*a^21-3191274428266445/23951867904*a^19-1416208296\ 425783/2993983488*a^17-738659504338743/665329664*a^15-578329556918107/33266483\ 2*a^13-3600060517219415/1995988992*a^11-600817089113611/498997248*a^9-20130393\ 478933/41583104*a^7-4219074351067/41583104*a^5-1247460863147/166332416*a^3-490\ 31553/10395776*a), x_1+(-1043517431/1149689659392*a^31-74714039867/574844829696*a^29-4302063456\ 83/63871647744*a^27-49554089624131/287422414848*a^25-236438682180409/958074716\ 16*a^23-1012923427454521/47903735808*a^21-5416054381750501/47903735808*a^19-92\ 91109071900473/23951867904*a^17-6956535335235565/7983955968*a^15-5157390068325\ 457/3991977984*a^13-1669406523173923/1330659328*a^11-515188561816595/665329664\ *a^9-189478179665259/665329664*a^7-18185272393811/332664832*a^5-1320914859311/\ 332664832*a^3-4174999491/166332416*a), x_1+(-14238539/71855603712*a^31-1791495523/63871647744*a^29-409329863627/287\ 422414848*a^27-10140395897419/287422414848*a^25-11497774568405/23951867904*a^2\ 3-182536292326145/47903735808*a^21-435878351900119/23951867904*a^19-1269052703\ 115137/23951867904*a^17-31290683416997/332664832*a^15-391730738093537/39919779\ 84*a^13-102831548431165/1995988992*a^11-4563805780177/1995988992*a^9+191935332\ 3659/166332416*a^7+1774692313829/332664832*a^5+142041834383/166332416*a^3+7904\ 567461/166332416*a), x_1+(14238539/71855603712*a^31+1791495523/63871647744*a^29+409329863627/2874\ 22414848*a^27+10140395897419/287422414848*a^25+11497774568405/23951867904*a^23\ +182536292326145/47903735808*a^21+435878351900119/23951867904*a^19+12690527031\ 15137/23951867904*a^17+31290683416997/332664832*a^15+391730738093537/399197798\ 4*a^13+102831548431165/1995988992*a^11+4563805780177/1995988992*a^9-1919353323\ 659/166332416*a^7-1774692313829/332664832*a^5-142041834383/166332416*a^3-79045\ 67461/166332416*a), x_1+(1043517431/1149689659392*a^31+74714039867/574844829696*a^29+43020634568\ 3/63871647744*a^27+49554089624131/287422414848*a^25+236438682180409/9580747161\ 6*a^23+1012923427454521/47903735808*a^21+5416054381750501/47903735808*a^19+929\ 1109071900473/23951867904*a^17+6956535335235565/7983955968*a^15+51573900683254\ 57/3991977984*a^13+1669406523173923/1330659328*a^11+515188561816595/665329664*\ a^9+189478179665259/665329664*a^7+18185272393811/332664832*a^5+1320914859311/3\ 32664832*a^3+4174999491/166332416*a), x_1+(95357711/95807471616*a^31+20543292065/143711207424*a^29+2140273073569/2\ 87422414848*a^27+13808606859559/71855603712*a^25+33352760105135/11975933952*a^\ 23+24246999544157/997994496*a^21+3191274428266445/23951867904*a^19+14162082964\ 25783/2993983488*a^17+738659504338743/665329664*a^15+578329556918107/332664832\ *a^13+3600060517219415/1995988992*a^11+600817089113611/498997248*a^9+201303934\ 78933/41583104*a^7+4219074351067/41583104*a^5+1247460863147/166332416*a^3+4903\ 1553/10395776*a), x_1+(52845581/47903735808*a^31+30349276577/191614943232*a^29+2370092990123/2\ 87422414848*a^27+20371368115427/95807471616*a^25+73720217065361/23951867904*a^\ 23+1284352243605749/47903735808*a^21+3515944432549699/23951867904*a^19+1246477\ 4961780559/23951867904*a^17+304582431030689/249498624*a^15+7638974691417553/39\ 91977984*a^13+3976728128662661/1995988992*a^11+891742205717041/665329664*a^9+9\ 1079389663493/166332416*a^7+39686017807615/332664832*a^5+1693131733677/1663324\ 16*a^3+26987157165/166332416*a), x_1+(1735709399/1149689659392*a^31+1291280693/5987966976*a^29+6396264585293/\ 574844829696*a^27+2541087861115/8981950464*a^25+42685514533805/10645274624*a^2\ 3+704635388807/20791552*a^21+8528391072853951/47903735808*a^19+596982601553885\ /997994496*a^17+10498421268613349/7983955968*a^15+119301033109277/62374656*a^1\ 3+2438287006999709/1330659328*a^11+140483039438057/124749312*a^9+2779048824740\ 87/665329664*a^7+852607404283/10395776*a^5+2022868142885/332664832*a^3+3054981\ 75/20791552*a), x_1+(487272313/287422414848*a^31+1289482523/5322637312*a^29+56183079677/4490\ 975232*a^27+5085577912535/15967911936*a^25+36112639728673/7983955968*a^23+3189\ 272954073/83166208*a^21+201995692295219/997994496*a^19+8201495758804571/119759\ 33952*a^17+1011557716960833/665329664*a^15+2236739767280741/997994496*a^13+177\ 408973720/81217*a^11+1367869689663401/997994496*a^9+86490266015385/166332416*a\ ^7+4321493733575/41583104*a^5+158216669023/20791552*a^3+1969866461/83166208*a) , x_1+(1176118997/383229886464*a^31+42103685309/95807471616*a^29+1454630130635\ /63871647744*a^27+5236653866203/8981950464*a^25+799848997639121/95807471616*a^\ 23+1715063680384769/23951867904*a^21+18384601179268157/47903735808*a^19+396199\ 6504288151/2993983488*a^17+23952780632541893/7983955968*a^15+3005369284948071/\ 665329664*a^13+5973296703083771/1330659328*a^11+29747379769841/10395776*a^9+72\ 9603726117555/665329664*a^7+36518045255243/166332416*a^5+5255833154455/3326648\ 32*a^3+169535573/20791552*a), x_1+(1493492281/383229886464*a^31+160514320315/287422414848*a^29+18508983330\ 73/63871647744*a^27+106825758746347/143711207424*a^25+1022851334391265/9580747\ 1616*a^23+2202616032440041/23951867904*a^21+2638673511500635/5322637312*a^19+2\ 0623565958794069/11975933952*a^17+31445530093829441/7983955968*a^15+1195348652\ 3818433/1995988992*a^13+24012406658831515/3991977984*a^11+3870740056784281/997\ 994496*a^9+1001785753542603/665329664*a^7+51027717583475/166332416*a^5+7653967\ 570241/332664832*a^3+8156784591/83166208*a), x_1+(5547064829/1149689659392*a^31+198762412763/287422414848*a^29+6878052060\ 577/191614943232*a^27+66195296164295/71855603712*a^25+422860607398109/31935823\ 872*a^23+2734647045526303/23951867904*a^21+29525685083133233/47903735808*a^19+\ 1070262029839043/498997248*a^17+39246102262072279/7983955968*a^15+149540293485\ 55949/1995988992*a^13+30121333647352985/3991977984*a^11+811853901110489/166332\ 416*a^9+1265993859283069/665329664*a^7+64933325713737/166332416*a^5+9947393326\ 731/332664832*a^3+4354897295/20791552*a), x_1+(2387137355/383229886464*a^31+21379846115/23951867904*a^29+2662520466019\ 1/574844829696*a^27+18971202107023/15967911936*a^25+1634798202318467/958074716\ 16*a^23+586712369596199/3991977984*a^21+37953053904796037/47903735808*a^19+329\ 57719683582179/11975933952*a^17+50248197399127811/7983955968*a^15+238740128960\ 0347/249498624*a^13+38361960915954509/3991977984*a^11+6182680666015153/9979944\ 96*a^9+1599684611167905/665329664*a^7+40727317600665/83166208*a^5+122241832824\ 07/332664832*a^3+14461675125/83166208*a), x_1+(316262345/47903735808*a^31+544230109085/574844829696*a^29+294523748095/\ 5987966976*a^27+13456452507369/10645274624*a^25+218036972525605/11975933952*a^\ 23+7542152297609335/47903735808*a^21+851557088264065/997994496*a^19+7940814583\ 462665/2661318656*a^17+6863185088448505/997994496*a^15+42093757889236855/39919\ 77984*a^13+666391408259905/62374656*a^11+13870926281619145/1995988992*a^9+2263\ 42997006495/83166208*a^7+186214113220445/332664832*a^5+887160368835/20791552*a\ ^3+41420818635/166332416*a), x_1+(7880365675/1149689659392*a^31+188274995653/191614943232*a^29+2932600451\ 9411/574844829696*a^27+125492280368065/95807471616*a^25+1804896180880669/95807\ 471616*a^23+7788995206315909/47903735808*a^21+4678435793811693/5322637312*a^19\ +73397761769467337/23951867904*a^17+18735311636618035/2661318656*a^15+42954988\ 154550349/3991977984*a^13+43399863656624497/3991977984*a^11+4694298451896531/6\ 65329664*a^9+1834984794705831/665329664*a^7+188249142918295/332664832*a^5+1422\ 1659697487/332664832*a^3+33912557555/166332416*a), x_1+(4042744285/574844829696*a^31+32187975751/31935823872*a^29+1879309603829\ /35927801856*a^27+6027429086209/4490975232*a^25+102640701975317/5322637312*a^2\ 3+3980858518472945/23951867904*a^21+3579804831537031/3991977984*a^19+233443723\ 4591057/748495872*a^17+9507239943635953/1330659328*a^15+7243398225169135/66532\ 9664*a^13+1823743331458969/166332416*a^11+884899113733991/124749312*a^9+919781\ 706076915/332664832*a^7+94151627687003/166332416*a^5+3557954556085/83166208*a^\ 3+2410591001/10395776*a), x_1+(2623944199/287422414848*a^31+752270973133/574844829696*a^29+10849175825\ 23/15967911936*a^27+501373355503273/287422414848*a^25+600865108225135/23951867\ 904*a^23+3456869752501177/15967911936*a^21+14012209706995975/11975933952*a^19+\ 97667468483551439/23951867904*a^17+18687613575472417/1995988992*a^15+570832515\ 30607471/3991977984*a^13+4801094662490959/332664832*a^11+6222754679697441/6653\ 29664*a^9+606939117179801/166332416*a^7+248383159824721/332664832*a^5+46708072\ 90457/83166208*a^3+45215963389/166332416*a), x_1+(6288932627/383229886464*a^31+676177676227/287422414848*a^29+70221990704\ 813/574844829696*a^27+8348368690499/2661318656*a^25+1441172196882701/319358238\ 72*a^23+3110641133376895/7983955968*a^21+33644661220339553/15967911936*a^19+44\ 007416662454225/5987966976*a^17+134869088235956483/7983955968*a^15+17187981627\ 387251/665329664*a^13+104251404159613535/3991977984*a^11+8461693903983139/4989\ 97248*a^9+4412765111459797/665329664*a^7+226547531784319/166332416*a^5+3433061\ 5506473/332664832*a^3+22369886387/41583104*a) ] gap> STOP_TEST( "polynome.tst", 10000000);