Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X6 [33X[0;0YANUPQ Options[133X[101X234[1X6.1 [33X[0;0YOverview[133X[101X56[33X[0;0YIn this chapter we describe in detail all the options used by functions of7the [5XANUPQ[105X package. Note that by [21Xoptions[121X we mean [5XGAP[105X options that are passed8to functions after the arguments and separated from the arguments by a colon9as described in Chapter [14XReference: Function Calls[114X in the Reference Manual.10The user is strongly advised to read Section [14X'[33X[0;0YHints and Warnings regarding11the use of Options[133X'[114X.[133X1213[1X6.1-1 AllANUPQoptions[101X1415[33X[1;0Y[29X[2XAllANUPQoptions[102X( ) [32X function[133X1617[33X[0;0Ylists all the [5XGAP[105X options defined for functions of the [5XANUPQ[105X package:[133X1819[4X[32X Example [32X[104X20[4X[25Xgap>[125X [27XAllANUPQoptions();[127X[104X21[4X[28X[ "AllDescendants", "BasicAlgorithm", "Bounds", "CapableDescendants", [128X[104X22[4X[28X "ClassBound", "CustomiseOutput", "Exponent", "Filename", "GroupName", [128X[104X23[4X[28X "Identities", "Metabelian", "NumberOfSolubleAutomorphisms", "OrderBound", [128X[104X24[4X[28X "OutputLevel", "PcgsAutomorphisms", "PqWorkspace", "Prime", [128X[104X25[4X[28X "PrintAutomorphisms", "PrintPermutations", "QueueFactor", [128X[104X26[4X[28X "RankInitialSegmentSubgroups", "RedoPcp", "RelativeOrders", "Relators", [128X[104X27[4X[28X "SetupFile", "SpaceEfficient", "StandardPresentationFile", "StepSize", [128X[104X28[4X[28X "SubList", "TreeDepth", "pQuotient" ][128X[104X29[4X[32X[104X3031[33X[0;0YThe following global variable gives a partial breakdown of where the above32options are used.[133X3334[1X6.1-2 ANUPQoptions[101X3536[33X[1;0Y[29X[2XANUPQoptions[102X[32X global variable[133X3738[33X[0;0Yis a record of lists of names of admissible [5XANUPQ[105X options, such that each39field is either the name of a [21Xkey[121X [5XANUPQ[105X function or [10Xother[110X (for a40miscellaneous list of functions) and the corresponding value is the list of41option names that are admissible for the function (or miscellaneous list of42functions).[133X4344[33X[0;0YAlso, from within a [5XGAP[105X session, you may use [5XGAP[105X's help browser (see45Chapter [14XReference: The Help System[114X in the [5XGAP[105X Reference Manual); to find out46about any particular [5XANUPQ[105X option, simply type: [21X[10X?option [3Xoption[103X[10X[110X[121X, where [3Xoption[103X47is one of the options listed above without any quotes, e.g.[133X4849[4X[32X Example [32X[104X50[4X[25Xgap>[125X [27X?option Prime[127X[104X51[4X[32X[104X5253[33X[0;0Ywill display the sections in this manual that describe the [10XPrime[110X option. In54fact the first 4 are for the functions that have [10XPrime[110X as an option and the55last actually describes the option. So follow up by choosing[133X5657[4X[32X Example [32X[104X58[4X[25Xgap>[125X [27X?5[127X[104X59[4X[32X[104X6061[33X[0;0YThis is also the pattern for other options (the last section of the list62always describes the option; the other sections are the functions with which63the option may be used).[133X6465[33X[0;0YIn the section following we describe in detail all [5XANUPQ[105X options. To66continue onto the next section on-line using [5XGAP[105X's help browser, type:[133X6768[4X[32X Example [32X[104X69[4X[25Xgap>[125X [27X?>[127X[104X70[4X[32X[104X717273[1X6.2 [33X[0;0YDetailed descriptions of ANUPQ Options[133X[101X7475[8X[10XPrime := [3Xp[103X[8X[10X[110X[8X [108X76[33X[0;6YSpecifies that the [22Xp[122X-quotient for the prime [3Xp[103X should be computed.[133X7778[8X[10XClassBound := [3Xn[103X[8X[10X[110X[8X [108X79[33X[0;6YSpecifies that the [22Xp[122X-quotient to be computed has lower exponent-[22Xp[122X80class at most [3Xn[103X. If this option is omitted a default of 63 (which is81the maximum possible for the [10Xpq[110X program) is taken, except for82[10XPqDescendants[110X (see [2XPqDescendants[102X ([14X4.4-1[114X)) and in a special case of83[10XPqPCover[110X (see [2XPqPCover[102X ([14X4.1-3[114X)). Let [3XF[103X be the argument (or start group84of the process in the interactive case) for the function; then for85[10XPqDescendants[110X the default is [10XPClassPGroup([3XF[103X[10X) + 1[110X, and for the special86case of [10XPqPCover[110X the default is [10XPClassPGroup([3XF[103X[10X)[110X.[133X8788[8X[10XpQuotient := [3XQ[103X[8X[10X[110X[8X [108X89[33X[0;6YThis option is only available for the standard presentation functions.90It specifies that a [22Xp[122X-quotient of the group argument of the function91or group of the process is the pc [3Xp[103X-group [3XQ[103X, where [3XQ[103X is of class [13Xless92than[113X the provided (or default) value of [10XClassBound[110X. If [10XpQuotient[110X is93provided, then the option [10XPrime[110X if also provided, is ignored; the94prime [3Xp[103X is discovered by computing [10XPrimePGroup([3XQ[103X[10X)[110X.[133X9596[8X[10XExponent := [3Xn[103X[8X[10X[110X[8X [108X97[33X[0;6YSpecifies that the [22Xp[122X-quotient to be computed has exponent [3Xn[103X. For an98interactive process, [10XExponent[110X defaults to a previously supplied value99for the process. Otherwise (and non-interactively), the default is 0,100which means that no exponent law is enforced.[133X101102[8X[10XRelators := [3Xrels[103X[8X[10X[110X[8X [108X103[33X[0;6YSpecifies that the relators sent to the [10Xpq[110X program should be [3Xrels[103X104instead of the relators of the argument group [3XF[103X (or start group in the105interactive case) of the calling function; [3Xrels[103X should be a list of106[13Xstrings[113X in the string representations of the generators of [3XF[103X, and [3XF[103X107must be an [13Xfp group[113X (even if the calling function accepts a pc group).108This option provides a way of giving relators to the [10Xpq[110X program,109without having them pre-expanded by [5XGAP[105X, which can sometimes effect a110performance loss of the order of 100 (see Section [14X'[33X[0;0YThe Relators111Option[133X'[114X).[133X112113[33X[0;6Y[13XNotes[113X[133X114115[31X1[131X [33X[0;12YThe [10Xpq[110X program does not use [10X/[110X to indicate multiplication by an116inverse and uses square brackets to represent (left normed)117commutators. Also, even though the [10Xpq[110X program accepts relations,118all elements of [3Xrels[103X [13Xmust[113X be in relator form, i.e. a relation of119form [10X[3Xw1[103X[10X = [3Xw2[103X[10X[110X must be written as [10X[3Xw1[103X[10X*([3Xw2[103X[10X)^-1[110X and then put in a120pair of double-quotes to make it a string. See the example121below.[133X122123[31X2[131X [33X[0;12YTo ensure there are no syntax errors in [3Xrels[103X, each relator is124parsed for validity via [10XPqParseWord[110X (see [2XPqParseWord[102X ([14X3.4-3[114X)).125If they are ok, a message to say so is [10XInfo[110X-ed at [10XInfoANUPQ[110X126level 2.[133X127128[8X[10XMetabelian[110X[8X [108X129[33X[0;6YSpecifies that the largest metabelian [22Xp[122X-quotient subject to any other130conditions specified by other options be constructed. By default this131restriction is not enforced.[133X132133[8X[10XGroupName := [3Xname[103X[8X[10X[110X[8X [108X134[33X[0;6YSpecifies that the [10Xpq[110X program should refer to the group by the name135[3Xname[103X (a string). If [10XGroupName[110X is not set and the group has been136assigned a name via [10XSetName[110X (see [14XReference: Name[114X) it is set as the137name the [10Xpq[110X program should use. Otherwise, the [21Xgeneric[121X name [10X"[grp]"[110X is138set as a default.[133X139140[8X[10XIdentities := [3Xfuncs[103X[8X[10X[110X[8X [108X141[33X[0;6YSpecifies that the pc presentation should satisfy the laws defined by142each function in the list [3Xfuncs[103X. This option may be called by [10XPq[110X,143[10XPqEpimorphism[110X, or [10XPqPCover[110X (see [2XPq[102X ([14X4.1-1[114X)). Each function in the list144[3Xfuncs[103X must return a word in its arguments (there may be any number of145arguments). Let [3Xidentity[103X be one such function in [3Xfuncs[103X. Then as each146lower exponent [3Xp[103X-class quotient is formed, instances [22X[3Xidentity[103X([3Xw1[103X,147dots, [3Xwn[103X)[122X are added as relators to the pc presentation, where [22X[3Xw1[103X,148dots, [3Xwn[103X[122X are words in the pc generators of the quotient. At each class149the class and number of pc generators is [10XInfo[110X-ed at [10XInfoANUPQ[110X level 1,150the number of instances is [10XInfo[110X-ed at [10XInfoANUPQ[110X level 2, and the151instances that are evaluated are [10XInfo[110X-ed at [10XInfoANUPQ[110X level 3. As152usual timing information is [10XInfo[110X-ed at [10XInfoANUPQ[110X level 2; and details153of the processing of each instance from the [10Xpq[110X program (which is often154quite [13Xvoluminous[113X) is [10XInfo[110X-ed at [10XInfoANUPQ[110X level 3. Try the examples155[10X"B2-4-Id"[110X and [10X"11gp-3-Engel-Id"[110X which demonstrate the usage of the156[10XIdentities[110X option; these are run using [10XPqExample[110X (see [2XPqExample[102X157([14X3.4-4[114X)). Take note of Note 1. below in relation to the example158[10X"B2-4-Id"[110X; the companion example [10X"B2-4"[110X generates the same group using159the [10XExponent[110X option. These examples are discussed at length in160Section [14X'[33X[0;0YThe Identities Option and PqEvaluateIdentities Function[133X'[114X.[133X161162[33X[0;6Y[13XNotes[113X[133X163164[31X1[131X [33X[0;12YSetting the [10XInfoANUPQ[110X level to 3 or more when setting the165[10XIdentities[110X option may slow down the computation considerably, by166overloading [5XGAP[105X with io operations.[133X167168[31X2[131X [33X[0;12YThe [10XIdentities[110X option is implemented at the [5XGAP[105X level. An169identity that is just an exponent law should be specified using170the [10XExponent[110X option (see [2Xoption Exponent[102X), which is implemented171at the C level and is highly optimised and so is much more172efficient.[133X173174[31X3[131X [33X[0;12YThe number of instances of each identity tends to grow175combinatorially with the class. So [13Xcare[113X should be exercised in176using the [10XIdentities[110X option, by including other restrictions,177e.g. by using the [10XClassBound[110X option (see [2Xoption ClassBound[102X).[133X178179[8X[10XOutputLevel := [3Xn[103X[8X[10X[110X[8X [108X180[33X[0;6YSpecifies the level of [21Xverbosity[121X of the information output by the ANU181[10Xpq[110X program when computing a pc presentation; [3Xn[103X must be an integer in182the range 0 to 3. [10XOutputLevel := 0[110X displays at most one line of output183and is the default; [10XOutputLevel := 1[110X displays (usually) slightly more184output and [10XOutputLevel[110Xs of 2 and 3 are two levels of verbose output.185To see these messages from the [10Xpq[110X program, the [10XInfoANUPQ[110X level must be186set to at least 1 (see [2XInfoANUPQ[102X ([14X3.3-1[114X)). See Section [14X'[33X[0;0YHints and187Warnings regarding the use of Options[133X'[114X for an example of how188[10XOutputLevel[110X can be used as a troubleshooting tool.[133X189190[8X[10XRedoPcp[110X[8X [108X191[33X[0;6YSpecifies that the current pc presentation (for an interactive192process) stored by the [10Xpq[110X program be scrapped and clears the current193values stored for the options [10XPrime[110X, [10XClassBound[110X, [10XExponent[110X and194[10XMetabelian[110X and also clears the [10XpQuotient[110X, [10XpQepi[110X and [10XpCover[110X fields of195the data record of the process.[133X196197[8X[10XSetupFile := [3Xfilename[103X[8X[10X[110X[8X [108X198[33X[0;6YNon-interactively, this option directs that [10Xpq[110X should not be called199and that an input file with name [3Xfilename[103X (a string), containing the200commands necessary for the ANU [10Xpq[110X standalone, be constructed. The201commands written to [3Xfilename[103X are also [10XInfo[110X-ed behind a [21X[10XToPQ> [110X[121X prompt202at [10XInfoANUPQ[110X level 4 (see [2XInfoANUPQ[102X ([14X3.3-1[114X)). Except in the case203following, the calling function returns [9Xtrue[109X. If the calling function204is the non-interactive version of one of [10XPq[110X, [10XPqPCover[110X or [10XPqEpimorphism[110X205and the group provided as argument is trivial given with an empty set206of generators, then no setup file is written and [9Xfail[109X is returned (the207[10Xpq[110X program cannot do anything useful with such a group).208Interactively, [10XSetupFile[110X is ignored.[133X209210[33X[0;6Y[13XNote:[113X Since commands emitted to the [10Xpq[110X program may depend on knowing211what the [21Xcurrent state[121X is, to form a setup file some [21Xclose enough212guesses[121X may sometimes be necessary; when this occurs a warning is213[10XInfo[110X-ed at [10XInfoANUPQ[110X or [10XInfoWarning[110X level 1. To determine whether the214[21Xclose enough guesses[121X give an accurate setup file, it is necessary to215run the command without the [10XSetupFile[110X option, after either setting the216[10XInfoANUPQ[110X level to at least 4 (the setup file script can then be217compared with the [21X[10XToPQ> [110X[121X commands that are [10XInfo[110X-ed) or setting a [10Xpq[110X218command log file by using [10XToPQLog[110X (see [2XToPQLog[102X ([14X3.4-7[114X)).[133X219220[8X[10XPqWorkspace := [3Xworkspace[103X[8X[10X[110X[8X [108X221[33X[0;6YNon-interactively, this option sets the memory used by the [10Xpq[110X program.222It sets the maximum number of integer-sized elements to allocate in223its main storage array. By default, the [10Xpq[110X program sets this figure to22410000000. Interactively, [10XPqWorkspace[110X is ignored; the memory used in225this case may be set by giving [10XPqStart[110X a second argument (see [2XPqStart[102X226([14X5.1-1[114X)).[133X227228[8X[10XPcgsAutomorphisms[110X[8X [108X229[8X[10XPcgsAutomorphisms := false[110X[8X [108X230[33X[0;6YLet [3XG[103X be the group associated with the calling function (or associated231interactive process). Passing the option [10XPcgsAutomorphisms[110X without a232value (or equivalently setting it to [9Xtrue[109X), specifies that a233polycyclic generating sequence for the automorphism group (which must234be [13Xsoluble[113X) of [3XG[103X, be computed and passed to the [10Xpq[110X program. This235increases the efficiency of the computation; it also prevents the [10Xpq[110X236from calling [5XGAP[105X for orbit-stabilizer calculations. By default,237[10XPcgsAutomorphisms[110X is set to the value returned by [10XIsSolvable(238AutomorphismGroup( [3XG[103X[10X ) )[110X, and uses the package [5XAutPGrp[105X to compute239[10XAutomorphismGroup( [3XG[103X[10X )[110X if it is installed. This flag is set to [9Xtrue[109X or240[9Xfalse[109X in the background according to the above criterion by the241function [10XPqDescendants[110X (see [2XPqDescendants[102X ([14X4.4-1[114X) and [2XPqDescendants[102X242([14X5.3-6[114X)).[133X243244[33X[0;6Y[13XNote:[113X If [10XPcgsAutomorphisms[110X is used when the automorphism group of [3XG[103X is245insoluble, an error message occurs.[133X246247[8X[10XOrderBound := [3Xn[103X[8X[10X[110X[8X [108X248[33X[0;6YSpecifies that only descendants of size at most [22Xp^[3Xn[103X[122X, where [3Xn[103X is a249non-negative integer, be generated. Note that you cannot set both250[10XOrderBound[110X and [10XStepSize[110X.[133X251252[8X[10XStepSize := [3Xn[103X[8X[10X[110X[8X [108X253[8X[10XStepSize := [3Xlist[103X[8X[10X[110X[8X [108X254[33X[0;6YFor a positive integer [3Xn[103X, [10XStepSize[110X specifies that only those immediate255descendants which are a factor [22Xp^[3Xn[103X[122X bigger than their parent group be256generated.[133X257258[33X[0;6YFor a list [3Xlist[103X of positive integers such that the sum of the length259of [3Xlist[103X and the exponent-[22Xp[122X class of [3XG[103X is equal to the class bound260defined by the option [10XClassBound[110X, [10XStepSize[110X specifies that the integers261of [3Xlist[103X are the step sizes for each additional class.[133X262263[8X[10XRankInitialSegmentSubgroups := [3Xn[103X[8X[10X[110X[8X [108X264[33X[0;6YSets the rank of the initial segment subgroup chosen to be [3Xn[103X. By265default, this has value 0.[133X266267[8X[10XSpaceEfficient[110X[8X [108X268[33X[0;6YSpecifies that the [10Xpq[110X program performs certain calculations of [22Xp[122X-group269generation more slowly but with greater space efficiency. This flag is270frequently necessary for groups of large Frattini quotient rank. The271space saving occurs because only one permutation is stored at any one272time. This option is only available if the [10XPcgsAutomorphisms[110X flag is273set to [9Xtrue[109X (see [2Xoption PcgsAutomorphisms[102X). For an interactive274process, [10XSpaceEfficient[110X defaults to a previously supplied value for275the process. Otherwise (and non-interactively), [10XSpaceEfficient[110X is by276default [9Xfalse[109X.[133X277278[8X[10XCapableDescendants[110X[8X [108X279[33X[0;6YBy default, [13Xall[113X (i.e. capable and terminal) descendants are computed.280If this flag is set, only capable descendants are computed. Setting281this option is equivalent to setting [10XAllDescendants := false[110X282(see [2Xoption AllDescendants[102X), except if both [10XCapableDescendants[110X and283[10XAllDescendants[110X are passed, [10XAllDescendants[110X is essentially ignored.[133X284285[8X[10XAllDescendants := false[110X[8X [108X286[33X[0;6YBy default, [13Xall[113X descendants are constructed. If this flag is set to287[9Xfalse[109X, only capable descendants are computed. Passing [10XAllDescendants[110X288without a value (which is equivalent to setting it to [9Xtrue[109X) is289superfluous. This option is provided only for backward compatibility290with the [5XGAP[105X 3 version of the [5XANUPQ[105X package, where by default291[10XAllDescendants[110X was set to [9Xfalse[109X (rather than [9Xtrue[109X). It is preferable292to use [10XCapableDescendants[110X (see [2Xoption CapableDescendants[102X).[133X293294[8X[10XTreeDepth := [3Xclass[103X[8X[10X[110X[8X [108X295[33X[0;6YSpecifies that the descendants tree developed by296[10XPqDescendantsTreeCoclassOne[110X (see [2XPqDescendantsTreeCoclassOne[102X ([14XA.4-1[114X))297should be extended to class [3Xclass[103X, where [3Xclass[103X is a positive integer.[133X298299[8X[10XSubList := [3Xsub[103X[8X[10X[110X[8X [108X300[33X[0;6YSuppose that [3XL[103X is the list of descendants generated, then for a list301[3Xsub[103X of integers this option causes [10XPqDescendants[110X to return [10XSublist( [3XL[103X[10X,302[3Xsub[103X[10X )[110X. If an integer [3Xn[103X is supplied, [10XPqDescendants[110X returns [10X[3XL[103X[10X[[3Xn[103X[10X][110X.[133X303304[8X[10XNumberOfSolubleAutomorphisms := [3Xn[103X[8X[10X[110X[8X [108X305[33X[0;6YSpecifies that the number of soluble automorphisms of the automorphism306group supplied by [10XPqPGSupplyAutomorphisms[110X (see [2XPqPGSupplyAutomorphisms[102X307([14X5.9-1[114X)) in a [22Xp[122X-group generation calculation is [3Xn[103X. By default, [3Xn[103X is308taken to be [22X0[122X; [3Xn[103X must be a non-negative integer. If [22X[3Xn[103X ge 0[122X then a309value for the option [10XRelativeOrders[110X (see [14X6.2[114X) must also be supplied.[133X310311[8X[10XRelativeOrders := [3Xlist[103X[8X[10X[110X[8X [108X312[33X[0;6YSpecifies the relative orders of each soluble automorphism of the313automorphism group supplied by [10XPqPGSupplyAutomorphisms[110X314(see [2XPqPGSupplyAutomorphisms[102X ([14X5.9-1[114X)) in a [22Xp[122X-group generation315calculation. The list [3Xlist[103X must consist of [3Xn[103X positive integers, where316[3Xn[103X is the value of the option [10XNumberOfSolubleAutomorphisms[110X (see [14X6.2[114X).317By default [3Xlist[103X is empty.[133X318319[8X[10XBasicAlgorithm[110X[8X [108X320[33X[0;6YSpecifies that an algorithm that the [10Xpq[110X program calls its [21Xdefault[121X321algorithm be used for [22Xp[122X-group generation. By default this algorithm is322[13Xnot[113X used. If this option is supplied the settings of options323[10XRankInitialSegmentSubgroups[110X, [10XAllDescendants[110X, [10XExponent[110X and [10XMetabelian[110X324are ignored.[133X325326[8X[10XCustomiseOutput := [3Xrec[103X[8X[10X[110X[8X [108X327[33X[0;6YSpecifies that fine tuning of the output is desired. The record [3Xrec[103X328should have any subset (or all) of the the following fields:[133X329330[8X[10Xperm := [3Xlist[103X[8X[10X[110X[8X[108X331[33X[0;12Ywhere [3Xlist[103X is a list of booleans which determine whether the332permutation group output for the automorphism group should333contain: the degree, the extended automorphisms, the334automorphism matrices, and the permutations, respectively.[133X335336[8X[10Xorbit := [3Xlist[103X[8X[10X[110X[8X[108X337[33X[0;12Ywhere [3Xlist[103X is a list of booleans which determine whether the338orbit output of the action of the automorphism group should339contain: a summary, and a complete listing of orbits,340respectively. (It's possible to have [13Xboth[113X a summary and a341complete listing.)[133X342343[8X[10Xgroup := [3Xlist[103X[8X[10X[110X[8X[108X344[33X[0;12Ywhere [3Xlist[103X is a list of booleans which determine whether the345group output should contain: the standard matrix of each346allowable subgroup, the presentation of reduced [22Xp[122X-covering347groups, the presentation of immediate descendants, the nuclear348rank of descendants, and the [22Xp[122X-multiplicator rank of349descendants, respectively.[133X350351[8X[10Xautgroup := [3Xlist[103X[8X[10X[110X[8X[108X352[33X[0;12Ywhere [3Xlist[103X is a list of booleans which determine whether the353automorphism group output should contain: the commutator matrix,354the automorphism group description of descendants, and the355automorphism group order of descendants, respectively.[133X356357[8X[10Xtrace := [3Xval[103X[8X[10X[110X[8X[108X358[33X[0;12Ywhere [3Xval[103X is a boolean which if [9Xtrue[109X specifies algorithm trace359data is desired. By default, one does not get algorithm trace360data.[133X361362[33X[0;6YNot providing a field (or mis-spelling it!), specifies that the363default output is desired. As a convenience, [10X1[110X is also accepted as364[9Xtrue[109X, and any value that is neither [10X1[110X nor [9Xtrue[109X is taken as [9Xfalse[109X. Also365for each [3Xlist[103X above, an unbound list entry is taken as [9Xfalse[109X. Thus,366for example[133X367368[4X [32X Example [32X[104X369[4X[28XCustomiseOutput := rec(group := [,,1], autgroup := [,1])[128X[104X370[4X[32X[104X371372[33X[0;6Yspecifies for the group output that only the presentation of immediate373descendants is desired, for the automorphism group output only the374automorphism group description of descendants should be printed, that375there should be no algorithm trace data, and that the default output376should be provided for the permutation group and orbit output.[133X377378[8X[10XStandardPresentationFile := [3Xfilename[103X[8X[10X[110X[8X [108X379[33X[0;6YSpecifies that the file to which the standard presentation is written380has name [3Xfilename[103X. If the first character of the string [3Xfilename[103X is381not [10X/[110X, [3Xfilename[103X is assumed to be the path of a writable file relative382to the directory in which [5XGAP[105X was started. If this option is omitted383it is written to the file with the name generated by the command384[10XFilename( ANUPQData.tmpdir, "SPres" );[110X, i.e. the file with name385[10X"SPres"[110X in the temporary directory in which the [10Xpq[110X program executes.[133X386387[8X[10XQueueFactor := [3Xn[103X[8X[10X[110X[8X [108X388[33X[0;6YSpecifies a queue factor of [3Xn[103X, where [3Xn[103X must be a positive integer.389This option may be used with [10XPqNextClass[110X (see [2XPqNextClass[102X ([14X5.6-4[114X)).[133X390391[33X[0;6YThe queue factor is used when the [10Xpq[110X program uses automorphisms to392close a set of elements of the [22Xp[122X-multiplicator under their action.[133X393394[33X[0;6YThe algorithm used is a spinning algorithm: it starts with a set of395vectors in echelonized form (elements of the [22Xp[122X-multiplicator) and396closes the span of these vectors under the action of the397automorphisms. For this each automorphism is applied to each vector398and it is checked if the result is contained in the span computed so399far. If not, the span becomes bigger and the vector is put into a400queue and the automorphisms are applied to this vector at a later401stage. The process terminates when the automorphisms have been applied402to all vectors and no new vectors have been produced.[133X403404[33X[0;6YFor each new vector it is decided, if its processing should be405delayed. If the vector contains too many non-zero entries, it is put406into a second queue. The elements in this queue are processed only407when there are no elements in the first queue left.[133X408409[33X[0;6YThe queue factor is a percentage figure. A vector is put into the410second queue if the percentage of its non-zero entries exceeds the411queue factor.[133X412413[8X[10XBounds := [3Xlist[103X[8X[10X[110X[8X [108X414[33X[0;6YSpecifies a lower and upper bound on the indices of a list, where [3Xlist[103X415is a pair of positive non-decreasing integers. See [2XPqDisplayStructure[102X416([14X5.7-23[114X) and [2XPqDisplayAutomorphisms[102X ([14X5.7-24[114X) where this option may be417used.[133X418419[8X[10XPrintAutomorphisms := [3Xlist[103X[8X[10X[110X[8X [108X420[33X[0;6YSpecifies that automorphism matrices be printed.[133X421422[8X[10XPrintPermutations := [3Xlist[103X[8X[10X[110X[8X [108X423[33X[0;6YSpecifies that permutations of the subgroups be printed.[133X424425[8X[10XFilename := [3Xstring[103X[8X[10X[110X[8X [108X426[33X[0;6YSpecifies that an output or input file to be written to or read from427by the [10Xpq[110X program should have the name [3Xstring[103X.[133X428429430431