Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#Example: "11gp-3-Engel-Id" . . . 3-Engel group for prime 11 #Non-trivial example of using the `Identities' option #vars: F, a, b, G, f, procId, Q; #options: F := FreeGroup("a", "b"); a := F.1; b := F.2; G := F/[ a^11, b^11 ]; ## All word pairs u, v in the pc generators of the 11-quotient Q of G ## must satisfy the Engel identity: [u, v, v, v] = 1. f := function(u, v) return PqLeftNormComm( [u, v, v, v] ); end; #alt: do #procId := PqStart( G ); #alt: sub <procId> for <G> Q := Pq( G : Prime := 11, Identities := [ f ] ); ## We do a ``sample'' check that pairs of elements of Q do satisfy ## the given identity: f( Random(Q), Random(Q) ); f( Q.1, Q.2 );