Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#Example: "11gp-3-Engel-Id-i" . . . 3-Engel grp for prime 11 #Variation of "11gp-3-Engel-Id" broken down into its lower-level component #command parts. #vars: F, a, b, G, f, procId, Q; #options: F := FreeGroup("a", "b"); a := F.1; b := F.2; G := F/[ a^11, b^11 ]; ## All word pairs u, v in the pc generators of the 11-quotient Q of G ## must satisfy the Engel identity: [u, v, v, v] = 1. f := function(u, v) return PqLeftNormComm( [u, v, v, v] ); end; procId := PqStart( G : Prime := 11 ); PqPcPresentation( procId : ClassBound := 1);; PqEvaluateIdentities( procId : Identities := [f] );; for c in [2 .. 4] do PqNextClass( procId : Identities := [] ); #reset `Identities' option PqEvaluateIdentities( procId : Identities := [f] ); od; Q := PqCurrentGroup( procId ); ## We do a ``sample'' check that pairs of elements of Q do satisfy ## the given identity: f( Random(Q), Random(Q) ); f( Q.1, Q.2 );