Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #A anupga.tst ANUPQ package Werner Nickel ## ## A test file for the GAP 4 interface to the ANUPQ p-group generation ## algorithm. ## Execute this file with `Test( "anupga.tst" );'. ## The number of GAPstones returned at the end do not mean much as they do ## not measure the time spent by the `pq' binary. ## *Note:* `PqDescendants' now computes *all* descendants by default, not ## just the capable ones. ## gap> START_TEST( "Testing ANUPQ p-group generation" ); gap> SetInfoLevel(InfoANUPQ, 1); gap> F := FreeGroup(2); <free group on the generators [ f1, f2 ]> gap> G := PcGroupFpGroup( F / [ F.1^2, F.2^2, Comm(F.1,F.2) ] ); <pc group of size 4 with 2 generators> gap> a1 := GroupHomomorphismByImages( G, G, [G.1, G.2], [G.2, G.1 * G.2] ); [ f1, f2 ] -> [ f2, f1*f2 ] gap> a2 := GroupHomomorphismByImages( G, G, [G.1, G.2], [G.2, G.1] ); [ f1, f2 ] -> [ f2, f1 ] gap> SetAutomorphismGroup( G, Group( a1, a2 ) ); gap> L := PqDescendants( G, "OrderBound", 4, "ClassBound", 4 ); [ <pc group of size 8 with 3 generators>, <pc group of size 8 with 3 generators>, <pc group of size 8 with 3 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators> ] gap> List( L, P->Rules(ElementsFamily(FamilyObj(P))!.rewritingSystem) ); [ [ f1^2*f3^-1, f2^2, f3^2, f1^-1*f2*f1*f2^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1 ], [ f1^2, f2^2, f3^2, f1^-1*f2*f1*f3^-1*f2^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1 ], [ f1^2*f3^-1, f2^2*f3^-1, f3^2, f1^-1*f2*f1*f3^-1*f2^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1 ], [ f1^2*f3^-1, f2^2*f4^-1, f3^2, f4^2, f1^-1*f2*f1*f2^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1, f1^-1*f4*f1*f4^-1, f2^-1*f4*f2*f4^-1, f3^-1*f4*f3*f4^-1 ], [ f1^2*f4^-1, f2^2, f3^2, f4^2, f1^-1*f2*f1*f3^-1*f2^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1, f1^-1*f4*f1*f4^-1, f2^-1*f4*f2*f4^-1, f3^-1*f4*f3*f4^-1 ], [ f1^2*f4^-1, f2^2*f3^-1, f3^2, f4^2, f1^-1*f2*f1*f3^-1*f2^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1, f1^-1*f4*f1*f4^-1, f2^-1*f4*f2*f4^-1, f3^-1*f4*f3*f4^-1 ], [ f1^2*f3^-1, f2^2, f3^2*f4^-1, f4^2, f1^-1*f2*f1*f2^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1, f1^-1*f4*f1*f4^-1, f2^-1*f4*f2*f4^-1, f3^-1*f4*f3*f4^-1 ], [ f1^2*f3^-1, f2^2, f3^2*f4^-1, f4^2, f1^-1*f2*f1*f4^-1*f2^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1, f1^-1*f4*f1*f4^-1, f2^-1*f4*f2*f4^-1, f3^-1*f4*f3*f4^-1 ], [ f1^2, f2^2, f3^2*f4^-1, f4^2, f1^-1*f2*f1*f3^-1*f2^-1, f1^-1*f3*f1*f4^-1*f3^-1, f2^-1*f3*f2*f4^-1*f3^-1, f1^-1*f4*f1*f4^-1, f2^-1*f4*f2*f4^-1, f3^-1*f4*f3*f4^-1 ], [ f1^2*f4^-1, f2^2, f3^2*f4^-1, f4^2, f1^-1*f2*f1*f3^-1*f2^-1, f1^-1*f3*f1*f4^-1*f3^-1, f2^-1*f3*f2*f4^-1*f3^-1, f1^-1*f4*f1*f4^-1, f2^-1*f4*f2*f4^-1, f3^-1*f4*f3*f4^-1 ], [ f1^2*f4^-1, f2^2*f4^-1, f3^2*f4^-1, f4^2, f1^-1*f2*f1*f3^-1*f2^-1, f1^-1*f3*f1*f4^-1*f3^-1, f2^-1*f3*f2*f4^-1*f3^-1, f1^-1*f4*f1*f4^-1, f2^-1*f4*f2*f4^-1, f3^-1*f4*f3*f4^-1 ] ] gap> List( L, P->Size(AutomorphismGroup(P)) ); [ 8, 8, 24, 96, 32, 32, 16, 16, 32, 16, 32 ] gap> STOP_TEST( "anupga.tst", 1000000 );