Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W test.g GAP 4 package AtlasRep Thomas Breuer ## #Y Copyright (C) 2001, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany ## ## This file contains functions to test the data available in the ## ATLAS of Group Representations. ## ############################################################################# ## ## <#GAPDoc Label="tests"> ## The fact that the &ATLAS; of Group Representations is designed as an ## open database ## (see Section <Ref Subsect="subsect:Local or remote access"/>) ## makes it especially desirable to have consistency checks available ## which can be run automatically ## whenever new data are added by the developers of the &ATLAS;. ## The tests described in Section ## <Ref Subsect="subsect:AGR sanity checks by toc"/> can be used ## also for data from private extensions of the package ## (see Chapter <Ref Chap="chap:Private Extensions"/>), ## Section <Ref Subsect="subsect:AGR other sanity checks"/> lists tests ## which do not have this property. ## <P/> ## All these tests apply only to the <E>local</E> table of contents ## (see Section <Ref Sect="sect:The Tables of Contents of the AGR"/>) ## or to private extensions. ## So only those data files are checked that are actually available ## in the local &GAP; installation. ## No files are fetched from servers during these tests. ## The required space and time for running these tests ## depend on the amount of locally available data. ## <P/> ## The file <F>tst/testall.g</F> of the package ## contains <Ref Func="Test" BookName="ref"/> statements ## for executing a collection of such sanity checks; ## one can run them by calling ## <C>ReadPackage( "AtlasRep", "tst/testall.g" )</C>. ## If no problem occurs then &GAP; prints only lines starting with one of ## the following. ## <P/> ## <Log><![CDATA[ ## + Input file: ## + GAP4stones: ## ]]></Log> ## <P/> ## Some of the checks compute and verify additional data, ## such as information about point stabilizers of permutation ## representations. ## In these cases, output lines starting with <C>#E</C> are error messages ## that point to inconsistencies, ## whereas output lines starting with <C>#I</C> inform about data that have ## been computed and were not yet stored, or about stored data that were not ## verified. ## <P/> ## The examples in the package manual form a part of the tests, ## they are collected in the file <F>tst/docxpl.tst</F> of the package. ## ## <Subsection Label="subsect:AGR sanity checks by toc"> ## <Heading>Sanity Checks for a Table of Contents</Heading> ## ## The following tests can be used to check the data that belong to a given ## table of contents. ## Each of these tests is given by a function with optional argument ## <A>tocid</A>, the identifying string that had been entered as the second ## argument of ## <Ref Func="AtlasOfGroupRepresentationsNotifyPrivateDirectory"/>. ## The contents of the local <F>dataword</F> directory can be checked by ## entering <C>"local"</C>, which is also the default for <A>tocid</A>. ## The function returns <K>false</K> if an error occurs, ## otherwise <K>true</K>. ## Currently the following tests of this kind are available. ## <P/> ## <List> ## <#Include Label="test:AGR.Test.Words"> ## <#Include Label="test:AGR.Test.FileHeaders"> ## <#Include Label="test:AGR.Test.Files"> ## <#Include Label="test:AGR.Test.BinaryFormat"> ## <#Include Label="test:AGR.Test.Primitivity"> ## <#Include Label="test:AGR.Test.Characters"> ## </List> ## ## </Subsection> ## ## <Subsection Label="subsect:AGR other sanity checks"> ## <Heading>Other Sanity Checks</Heading> ## ## The tests described in this section are not intended for checking data ## from private extensions of the <Package>AtlasRep</Package> package. ## Each of the tests is given by a function without arguments that ## returns <K>false</K> if a contradiction was found during the test, ## and <K>true</K> otherwise. ## Additionally, certain messages are printed ## when contradictions between stored and computed data are found, ## when stored data cannot be verified computationally, ## or when the computations yield improvements of the stored data. ## Currently the following tests of this kind are available. ## <P/> ## <List> ## <#Include Label="test:AGR.Test.GroupOrders"> ## <#Include Label="test:AGR.Test.MaxesOrders"> ## <#Include Label="test:AGR.Test.MaxesStructure"> ## <#Include Label="test:AGR.Test.StdCompatibility"> ## <#Include Label="test:AGR.Test.CompatibleMaxes"> ## <#Include Label="test:AGR.Test.ClassScripts"> ## <#Include Label="test:AGR.Test.CycToCcls"> ## <#Include Label="test:AGR.Test.Standardization"> ## <#Include Label="test:AGR.Test.StdTomLib"> ## <#Include Label="test:AGR.Test.KernelGenerators"> ## <#Include Label="test:AGR.Test.MinimalDegrees"> ## </List> ## ## </Subsection> ## <#/GAPDoc> ## if not IsPackageMarkedForLoading( "TomLib", "" ) then HasStandardGeneratorsInfo:= "dummy"; IsStandardGeneratorsOfGroup:= "dummy"; LIBTOMKNOWN:= "dummy"; StandardGeneratorsInfo:= "dummy"; fi; if not IsPackageMarkedForLoading( "CTblLib", "" ) then ConstructionInfoCharacterTable:= "dummy"; HasConstructionInfoCharacterTable:= "dummy"; LibInfoCharacterTable:= "dummy"; fi; if IsBound( StructureDescriptionCharacterTableName ) then AGR.StructureDescriptionCharacterTableName:= StructureDescriptionCharacterTableName; else AGR.StructureDescriptionCharacterTableName:= name -> name; fi; ############################################################################# ## #V AGR.Test ## AGR.Test:= rec(); ############################################################################# ## #V AGR.Test.HardCases #V AGR.Test.HardCases.MaxNumberMaxes #V AGR.Test.HardCases.MaxNumberStd #V AGR.Test.MaxTestDegree ## ## This is a record whose components belong to the various tests, ## and list data which shall be omitted from the tests ## because they would be too space or time consuming. ## ## In the test loops, we assume upper bounds on the numbers of available ## maximal subgroups and standardizations, ## and we perform some tests only if a sufficiently small permutation ## representation is available. ## AGR.Test.HardCases:= rec(); AGR.Test.HardCases.MaxNumberMaxes:= 50; AGR.Test.HardCases.MaxNumberStd:= 2; AGR.Test.MaxTestDegree:= 10^5; ############################################################################# ## #F AGR.Test.Words( [<tocid>[, <groupname>]][,][<verbose>] ) ## ## <#GAPDoc Label="test:AGR.Test.Words"> ## <Mark><C>AGR.Test.Words( [<A>tocid</A>] )</C></Mark> ## <Item> ## processes all straight line programs that are stored in the directory ## with identifier <A>tocid</A>, ## using the function stored in the <C>TestWords</C> component of the ## data type in question. ## </Item> ## <#/GAPDoc> ## AGR.Test.HardCases.TestWords:= [ [ "find", [ "B", "HN", "S417", "F24d2" ] ], [ "check", [ "B" ] ], [ "maxes", [ "Co1" ] ], ]; AGR.Test.Words:= function( arg ) local result, maxdeg, tocid, verbose, types, toc, name, r, type, omit, entry, prg, gens, grp, size; # Initialize the result. result:= true; maxdeg:= AGR.Test.MaxTestDegree; if Length( arg ) = 0 then return AGR.Test.Words( "local", false ); elif Length( arg ) = 1 and IsBool( arg[1] ) then return AGR.Test.Words( "local", arg[1] ); elif Length( arg ) = 1 and IsString( arg[1] ) then return AGR.Test.Words( arg[1], false ); elif Length( arg ) = 2 and IsString( arg[1] ) and IsString( arg[2] ) then return AGR.Test.Words( arg[1], arg[2], false ); elif Length( arg ) = 2 and IsString( arg[1] ) and IsBool( arg[2] ) then for name in AtlasOfGroupRepresentationsInfo.groupnames do result:= AGR.Test.Words( arg[1], name[3], arg[2] ) and result; od; return result; elif not ( Length( arg ) = 3 and IsString( arg[1] ) and IsString( arg[2] ) and IsBool( arg[3] ) ) then Error( "usage: AGR.Test.Words( [<tocid>[, ", "<groupname>]][,][<verbose>] )" ); fi; tocid:= arg[1]; verbose:= arg[3]; # Check only straight line programs. types:= AGR.DataTypes( "prg" ); toc:= AtlasTableOfContents( tocid ); if toc = fail then # No test is reasonable. return true; fi; name:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[2] = arg[2] ); if IsBound( toc.TableOfContents.( name[2] ) ) then r:= toc.TableOfContents.( name[2] ); # Note that the ordering in the `and' statement must not be # changed, in order to execute all tests! for type in types do omit:= First( AGR.Test.HardCases.TestWords, pair -> pair[1] = type[1] ); if IsBound( r.( type[1] ) ) then if IsList( omit ) and name[2] in omit[2] then if verbose then Print( "#I omit TestWords for ", type[1], " and ", name[2], "\n" ); fi; else for entry in r.( type[1] ) do result:= type[2].TestWords( tocid, name[2], entry[ Length( entry ) ], type, verbose ) and result; od; fi; fi; od; # Check also the `maxext' scripts (which do not form a data type # and which are stored in the remote table of contents only). r:= AtlasTableOfContents( "remote" ).TableOfContents.( name[2] ); if IsBound( r.maxext ) then for entry in r.maxext do prg:= AtlasProgram( name[1], entry[1], "maxes", entry[2] ); if prg = fail then if verbose then Print( "#I omit TestWords for maxext no. ", entry[2], " and ", name[2], "\n" ); fi; elif not IsInternallyConsistent( prg.program ) then Print( "#E program `", entry[3], "' not internally consistent\n" ); result:= false; else # Get a representation if available, and map the generators. gens:= OneAtlasGeneratingSetInfo( prg.groupname, prg.standardization, NrMovedPoints, [ 2 .. maxdeg ] ); if gens = fail then if verbose then Print( "#I no perm. repres. for `", prg.groupname, "', no check for `", entry[3], "'\n" ); fi; else gens:= AtlasGenerators( gens ); grp:= Group( gens.generators ); if IsBound( gens.size ) then SetSize( grp, gens.size ); fi; gens:= ResultOfStraightLineProgram( prg.program, gens.generators ); size:= Size( SubgroupNC( grp, gens ) ); if IsBound( prg.size ) and size <> prg.size then Print( "#E program `", entry[3], "' for group of order ", size, " not ", prg.size, "\n" ); result:= false; fi; fi; fi; od; fi; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.FileHeaders( [<tocid>[,<groupname>]] ) ## ## <#GAPDoc Label="test:AGR.Test.FileHeaders"> ## <Mark><C>AGR.Test.FileHeaders( [<A>tocid</A>] )</C></Mark> ## <Item> ## checks whether all &MeatAxe; text format data files in the directory ## with identifier <A>tocid</A> have a header line that is consistent with ## the filename, and whether the contents of all &GAP; format data files ## in this directory is consistent with the contents of the file. ## </Item> ## <#/GAPDoc> ## AGR.Test.FileHeaders:= function( arg ) local result, toc, record, type, entry, test, triple; # Initialize the result. result:= true; if Length( arg ) = 2 then toc:= AtlasTableOfContents( arg[1] ); if toc = fail then # No test is reasonable. return true; fi; toc:= toc.TableOfContents; if IsBound( toc.( arg[2] ) ) then record:= toc.( arg[2] ); for type in AGR.DataTypes( "rep" ) do if IsBound( record.( type[1] ) ) then for entry in record.( type[1] ) do test:= type[2].TestFileHeaders( arg[1], arg[2], entry, type ); if not IsBool( test ) then Print( "#E ", test, " for ", entry[ Length( entry ) ], "\n" ); test:= false; fi; result:= test and result; od; fi; od; fi; elif Length( arg ) = 1 then for triple in AtlasOfGroupRepresentationsInfo.groupnames do result:= AGR.Test.FileHeaders( arg[1], triple[3] ) and result; od; elif Length( arg ) = 0 then result:= AGR.Test.FileHeaders( "local" ); fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.BinaryFormat( [<tocid>] ) ## ## <#GAPDoc Label="test:AGR.Test.BinaryFormat"> ## <Mark><C>AGR.Test.BinaryFormat( [<A>tocid</A>] )</C></Mark> ## <Item> ## checks whether all &MeatAxe; text format data files in the directory ## with identifier <A>tocid</A> satisfy that applying first ## <Ref Func="CMtxBinaryFFMatOrPerm"/> and then ## <Ref Func="FFMatOrPermCMtxBinary"/> yields the same object. ## </Item> ## <#/GAPDoc> ## AGR.Test.BinaryFormat:= function( arg ) local tmpfile, tocid, result, r, gens, gen, test, cnv; # Create one temporary file. tmpfile:= Filename( DirectoryTemporary(), "testfile" ); # Get the data directory. if IsEmpty( arg ) then tocid:= "local"; else tocid:= arg[1]; fi; result:= true; for r in Concatenation( AllAtlasGeneratingSetInfos( "contents", tocid, IsPermGroup, true ), AllAtlasGeneratingSetInfos( "contents", tocid, Characteristic, IsPosInt ) ) do gens:= AtlasGenerators( r ); if gens <> fail then gens:= gens.generators; for gen in gens do test:= false; if IsPerm( gen ) then CMtxBinaryFFMatOrPerm( gen, LargestMovedPoint( gen ), tmpfile ); test:= true; elif IsMatrix( gen ) then cnv:= ConvertToMatrixRep( gen ); if IsInt( cnv ) then CMtxBinaryFFMatOrPerm( gen, cnv, tmpfile ); test:= true; fi; else Print( "#E not permutation or matrix for ", r, "\n" ); test:= false; result:= false; fi; if test and gen <> FFMatOrPermCMtxBinary( tmpfile ) then Print( "#E AGR.Test.BinaryFormat: differences for `", r, "'\n" ); result:= false; fi; od; fi; od; # Remove the temporary file. RemoveFile( tmpfile ); # Return the result. return result; end; ############################################################################# ## #F AGR.Test.Standardization( [<gapname>] ) ## ## <#GAPDoc Label="test:AGR.Test.Standardization"> ## <Mark><C>AGR.Test.Standardization()</C></Mark> ## <Item> ## checks whether all generating sets corresponding to the same set of ## standard generators have the same element orders; for the case that ## straight line programs for computing certain class representatives are ## available, also the orders of these representatives are checked ## w. r. t. all generating sets. ## </Item> ## <#/GAPDoc> ## AGR.Test.Standardization:= function( arg ) local result, name, gapname, gensorders, cclorders, cycorders, tbl, info, gens, std, ords, pair, prg, names, choice; # Initialize the result. result:= true; if Length( arg ) = 0 then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.Standardization( name[1] ) and result; od; elif Length( arg ) = 1 and IsString( arg[1] ) then gapname:= arg[1]; if AGR.InfoForName( gapname ) = fail then Print( "#E AGR.Test.Standardization: no group with GAP name `", gapname, "'\n" ); return false; fi; gensorders:= []; cclorders:= []; cycorders:= []; tbl:= CharacterTable( gapname ); # Loop over the relevant representations. for info in AllAtlasGeneratingSetInfos( gapname ) do gens:= AtlasGenerators( info.identifier ); std:= gens.standardization; # Check that the generators are invertible, # and that the orders are equal in all representations. if ForAll( gens.generators, x -> Inverse( x ) <> fail ) then ords:= List( gens.generators, Order ); else ords:= [ fail ]; fi; if not ForAll( ords, IsInt ) then Print( "#E representation `", gens.identifier[2], "': non-finite order\n" ); result:= false; elif IsBound( gensorders[ std+1 ] ) then if gensorders[ std+1 ] <> ords then Print( "#E '", gapname, "': representation '", gens.identifier[2], "':\n#E incompatible generator orders ", ords, " and ", gensorders[ std+1 ], "\n" ); result:= false; fi; else gensorders[ std+1 ]:= ords; fi; # If scripts for computing representatives of cyclic subgroups # or representatives of conjugacy classes are available # then check that their orders are equal in all representations. for pair in [ [ cclorders, "classes" ], [ cycorders, "cyclic" ] ] do if not IsBound( pair[1][ std+1 ] ) then prg:= AtlasProgram( gapname, std, pair[2] ); if prg = fail then pair[1][ std+1 ]:= fail; else pair[1][ std+1 ]:= [ prg.program, List( ResultOfStraightLineProgram( prg.program, gens.generators ), Order ) ]; if tbl <> fail then names:= AtlasClassNames( tbl ); if IsBound( prg.outputs ) then choice:= List( prg.outputs, x -> Position( names, x ) ); if ( not fail in choice ) and pair[1][ std+1 ][2] <> OrdersClassRepresentatives( tbl ){ choice } then Print( "#E '", gapname, "': representation '", gens.identifier[2], "':\n#E ", pair[2], " orders differ from character table\n" ); result:= false; fi; else Print( "#E no component `outputs' in `", pair[2], "' for `", gapname, "'\n" ); fi; fi; fi; elif pair[1][ std+1 ] <> fail then if pair[1][ std+1 ][2] <> List( ResultOfStraightLineProgram( pair[1][ std+1 ][1], gens.generators ), Order ) then Print( "#E '", gapname, "': representation '", gens.identifier[2], "':\n#E incompatible ", pair[2], " orders\n" ); result:= false; fi; fi; od; od; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.StdTomLib( [<gapname>] ) ## ## <#GAPDoc Label="test:AGR.Test.StdTomLib"> ## <Mark><C>AGR.Test.StdTomLib()</C></Mark> ## <Item> ## checks whether the standard generators are compatible with those that ## occur in the <Package>TomLib</Package> package. ## </Item> ## <#/GAPDoc> ## AGR.Test.StdTomLib:= function( arg ) local result, name, tomnames, tbl, tom, gapname, info, allgens, stdavail, verified, falsified, G, i, type, prg, res, gens, G2, fitstotom, fitstohom; if TestPackageAvailability( "TomLib", "1.0" ) <> true then Print( "#E TomLib not loaded, cannot verify ATLAS standardizations\n" ); return false; fi; # Initialize the result. result:= true; if Length( arg ) = 0 then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.StdTomLib( name[1] ) and result; od; # Check also that all tables of marks which provide a standardization # info with an `ATLAS' component belong to ATLAS groups. #T ... with a `standardization' component ... tomnames:= Set( List( Filtered( LIBTOMKNOWN.STDGEN, x -> x[2] <> "N" ), x -> x[1] ) ); for name in AtlasOfGroupRepresentationsInfo.GAPnames do tbl:= CharacterTable( name[1] ); if tbl <> fail then tom:= TableOfMarks( tbl ); if tom <> fail then RemoveSet( tomnames, Identifier( tom ) ); fi; fi; od; if not IsEmpty( tomnames ) then Print( "#E cannot verify ATLAS standardizations for tables of ", "marks in ", tomnames, "\n" ); result:= false; fi; elif Length( arg ) = 1 and IsString( arg[1] ) then gapname:= arg[1]; if AGR.InfoForName( gapname ) = fail then Print( "#E AGR.Test.Standardization: no group with GAP name `", gapname, "'\n" ); return false; fi; tbl:= CharacterTable( gapname ); # Check the ATLAS standardization against the TomLib standardization. # (We consider only ATLAS permutation representations.) if tbl = fail then tom:= fail; else tom:= TableOfMarks( tbl ); fi; if tom <> fail then if HasStandardGeneratorsInfo( tom ) then info:= StandardGeneratorsInfo( tom )[1]; #T can be a longer list??? else info:= fail; fi; allgens:= AllAtlasGeneratingSetInfos( gapname, IsPermGroup, true ); stdavail:= Set( List( allgens, x -> x.standardization ) ); allgens:= List( stdavail, i -> First( allgens, x -> x.standardization = i ) ); verified:= []; falsified:= []; G:= UnderlyingGroup( tom ); # Apply `pres' and `check' scripts to the TomLib generators. for i in stdavail do for type in [ "pres", "check" ] do prg:= AtlasProgram( gapname, i, type ); if prg <> fail then res:= ResultOfStraightLineDecision( prg.program, GeneratorsOfGroup( G ) ); if res = true then AddSet( verified, i ); if info = fail then Print( "#I ", gapname, ": extend TomLib standardization info, ", "standardization = ", i, "\n" ); elif IsBound( info.standardization ) and info.standardization <> i then Print( "#E ", gapname, ": set TomLib standardization info to ", i, " not ", info.standardization, "\n" ); result:= false; fi; else AddSet( falsified, i ); if info <> fail and IsBound( info.standardization ) and info.standardization = i then Print( "#E ", gapname, ": TomLib standardization info is not ", info.standardization, "\n" ); result:= false; fi; fi; fi; od; od; if info <> fail then # Compare the ATLAS generators with the TomLib standardization. for gens in allgens do gens:= AtlasGenerators( gens.identifier ); if info.script = fail then Print( "#E ", gapname, ": fail script in TomLib standardization\n" ); else G2:= Group( gens.generators ); fitstotom:= IsStandardGeneratorsOfGroup( info, G2, gens.generators ); fitstohom:= GroupHomomorphismByImages( G, G2, GeneratorsOfGroup( G ), gens.generators ) <> fail; if fitstotom <> fitstohom then Print( "#E ", gapname, ": IsStandardGeneratorsOfGroup and homom. construction for standardization ", gens.standardization, " inconsistent\n" ); fi; if fitstotom then AddSet( verified, gens.standardization ); if IsBound( info.standardization ) then if info.standardization <> gens.standardization then Print( "#I ", gapname, ": TomLib standardization is ", gens.standardization, " not ", info.standardization, "\n" ); result:= false; fi; else Print( "#I ", gapname, ": TomLib standardization is ", gens.standardization, "\n" ); fi; else AddSet( falsified, gens.standardization ); if IsBound( info.standardization ) and info.standardization = gens.standardization then Print( "#E ", gapname, ": TomLib standardization is not ", info.standardization, "\n" ); fi; fi; fi; od; elif not IsEmpty( stdavail ) then Print( "#I ", gapname, ": extend STDGEN info\n" ); fi; if verified = [] and falsified = stdavail then if info = fail then Print( "#I ", gapname, ": extend TomLib standardization info, ", "ATLAS = \"N\"\n" ); elif info.ATLAS = true then Print( "#E ", gapname, ": TomLib standardization info must be ATLAS = \"N\"\n" ); fi; elif info <> fail and info.ATLAS = false then Print( "#E ", gapname, ": cannot verify TomLib info ATLAS = \"N\"\n" ); fi; fi; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.Files( [<tocid>[, <groupname>]] ) ## ## <#GAPDoc Label="test:AGR.Test.Files"> ## <Mark><C>AGR.Test.Files( [<A>tocid</A>] )</C></Mark> ## <Item> ## checks whether the &MeatAxe; text files that are stored in the ## directory with identifier <A>tocid</A> can be read with ## <Ref Func="ScanMeatAxeFile"/> such that the result is not <K>fail</K>. ## The function does not check whether the first line of a &MeatAxe; text ## file is consistent with the filename, since this can be tested with ## <C>AGR.Test.FileHeaders</C>. ## </Item> ## <#/GAPDoc> ## AGR.Test.Files:= function( arg ) local result, toc, record, type, entry, triple; # Initialize the result. result:= true; if IsEmpty( arg ) then result:= AGR.Test.Files( "local" ); elif Length( arg ) = 1 then for triple in AtlasOfGroupRepresentationsInfo.groupnames do result:= AGR.Test.Files( arg[1], triple[3] ) and result; od; elif Length( arg ) = 2 then toc:= AtlasTableOfContents( arg[1] ); if toc = fail then return false; fi; toc:= toc.TableOfContents; if IsBound( toc.( arg[2] ) ) then record:= toc.( arg[2] ); for type in AGR.DataTypes( "rep" ) do if IsBound( record.( type[1] ) ) then for entry in record.( type[1] ) do result:= type[2].TestFiles( arg[1], arg[2], entry, type ) and result; od; fi; od; fi; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.ClassScripts( [<groupname>] ) ## ## <#GAPDoc Label="test:AGR.Test.ClassScripts"> ## <Mark><C>AGR.Test.ClassScripts()</C></Mark> ## <Item> ## checks whether the straight line programs that compute representatives ## of certain conjugacy classes are consistent with information stored on ## the &GAP; character table of the group in question, in the sense that ## the given class names really occur in the character table and that ## the element orders and centralizer orders for the classes are correct. ## </Item> ## <#/GAPDoc> ## AGR.Test.ClassScripts:= function( arg ) local result, maxdeg, groupname, gapname, toc, record, std, name, prg, tbl, outputs, ident, classnames, map, gens, roots, grp, reps, orders1, orders2, cents1, cents2, triple, pos, pos2, cycscript; # Initialize the result. result:= true; maxdeg:= AGR.Test.MaxTestDegree; if Length( arg ) = 1 and IsString( arg[1] ) then groupname:= arg[1]; gapname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> pair[2] = groupname ); if gapname = fail then Print( "#E no group with name `", groupname, "'\n" ); return false; fi; gapname:= gapname[1]; toc:= AtlasTableOfContents( "local" ); if toc = fail then return false; fi; toc:= toc.TableOfContents; #T admit also private tables of contents! if IsBound( toc.( groupname ) ) then record:= toc.( groupname ); for name in [ "cyclic", "classes", "cyc2ccl" ] do if IsBound( record.( name ) ) then for std in Set( List( record.( name ), x -> x[1] ) ) do prg:= AtlasProgram( gapname, std, name ); if prg = fail then Print( "#E inconsistent program `", name, "' for `", gapname, "'\n" ); result:= false; else # Fetch the character table of the group. # (No further tests are possible if it is not available.) tbl:= CharacterTable( gapname ); if tbl <> fail then ident:= prg.identifier[2]; classnames:= AtlasClassNames( tbl ); if IsBound( prg.outputs ) then outputs:= prg.outputs; map:= List( outputs, x -> Position( classnames, x ) ); else Print( "#E no component `outputs' in `", name, "' for `", gapname, "'\n" ); result:= false; outputs:= [ "-" ]; map:= [ fail ]; fi; prg:= prg.program; # (If `-' signs occur then we cannot test the names, # but the number of outputs can be checked.) roots:= ClassRoots( tbl ); roots:= Filtered( [ 1 .. Length( roots ) ], i -> IsEmpty( roots[i] ) ); roots:= Set( List( roots, x -> ClassOrbit( tbl, x ) ) ); if ForAll( outputs, x -> not '-' in x ) then # Check the class names. if fail in map then Print( "#E strange class names ", Difference( outputs, classnames ), " for `dataword/", ident, "'\n" ); result:= false; fi; if name in [ "classes", "cyc2ccl" ] and Set( classnames ) <> Set( outputs ) then Print( "#E class names ", Difference( classnames, outputs ), " not hit for `dataword/", ident, "'\n" ); result:= false; fi; if name = "cyclic" then # Check whether all maximally cyclic subgroups # are covered. roots:= Filtered( roots, list -> IsEmpty( Intersection( outputs, classnames{ list } ) ) ); if not IsEmpty( roots ) then Print( "#E maximally cyclic subgroups ", List( roots, x -> classnames{ x } ), " not hit for `dataword/", ident, "'\n" ); result:= false; fi; fi; elif name = "cyclic" and Length( outputs ) <> Length( roots ) then Print( "#E no. of outputs and cyclic subgroups differ", " for `dataword/", ident, "'\n" ); fi; if not fail in map then # Compute the representatives in a representation. # (No further tests are possible if none is available.) gens:= OneAtlasGeneratingSetInfo( gapname, std, NrMovedPoints, [ 2 .. maxdeg ] ); if gens <> fail then gens:= AtlasGenerators( gens.identifier ); if gens <> fail then gens:= gens.generators; fi; if fail in gens then gens:= fail; fi; if not name in [ "cyclic", "classes" ] then # The input consists of the images of the standard # generators under the `cyc' script. pos:= Position( ident, '-' ) - 1; pos2:= pos; while ident[ pos2 ] <> 'W' do pos2:= pos2 - 1; od; cycscript:= Concatenation( groupname, "G", String( std ), "-cycW", ident{ [ pos2+1 .. pos ] } ); cycscript:= AtlasProgram( [ gapname, cycscript, std ] ); if cycscript = fail then gens:= fail; Print( "#E no script `", cycscript, "' available\n" ); result:= false; else gens:= ResultOfStraightLineProgram( cycscript.program, gens ); fi; fi; fi; if gens <> fail then grp:= Group( gens ); reps:= ResultOfStraightLineProgram( prg, gens ); if Length( reps ) <> Length( outputs ) then Print( "#E inconsistent output numbers for ", "`dataword/", ident, "'\n" ); result:= false; else # Check element orders and centralizer orders. orders1:= OrdersClassRepresentatives( tbl ){ map }; orders2:= List( reps, Order ); if orders1 <> orders2 then Print( "#E element orders of ", outputs{ Filtered( [ 1 .. Length( outputs ) ], i -> orders1[i] <> orders2[i] ) }, " differ for `dataword/", ident, "'\n" ); result:= false; fi; cents1:= SizesCentralizers( tbl ){ map }; cents2:= List( reps, x -> Size( Centralizer(grp,x) ) ); if cents1 <> cents2 then Print( "#E centralizer orders of ", outputs{ Filtered( [ 1 .. Length( outputs ) ], i -> cents1[i] <> cents2[i] ) }, " differ for `dataword/", ident, "'\n" ); result:= false; fi; fi; fi; fi; fi; fi; od; fi; od; fi; elif IsEmpty( arg ) then for triple in AtlasOfGroupRepresentationsInfo.groupnames do result:= AGR.Test.ClassScripts( triple[3] ) and result; od; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.CycToCcls( [<groupname>] ) ## ## <#GAPDoc Label="test:AGR.Test.CycToCcls"> ## <Mark><C>AGR.Test.CycToCcls()</C></Mark> ## <Item> ## checks whether some straight line program that computes representatives ## of conjugacy classes of a group can be computed from the ordinary ## &GAP; character table of that group and a straight line program that ## computes representatives of cyclic subgroups. ## In this case the missing scripts are printed if the level of ## <Ref InfoClass="InfoAtlasRep"/> is at least <M>1</M>. ## </Item> ## <#/GAPDoc> ## AGR.Test.CycToCcls:= function( arg ) local result, groupname, gapname, toc, tbl, record, pref, datadirs, entry, tomatch, cyc2ccl, str, prg, triple; # Initialize the result. result:= true; if Length( arg ) = 1 and IsString( arg[1] ) then groupname:= arg[1]; gapname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> pair[2] = groupname ); if gapname = fail then Print( "#E no group with name `", groupname, "'\n" ); return false; fi; gapname:= gapname[1]; toc:= AtlasTableOfContents( "local" ); if toc = fail then return false; fi; toc:= toc.TableOfContents; # Fetch the character table of the group. # (No test is possible if it is not available.) tbl:= CharacterTable( gapname ); if tbl = fail then Print( "#I no character table of `", gapname, "' is available\n" ); return true; elif not IsBound( toc.( groupname ) ) then return true; fi; record:= toc.( groupname ); if IsBound( record.cyclic ) then if IsBound( record.cyc2ccl ) then cyc2ccl:= List( record.cyc2ccl, x -> SplitString( x[2], "-" ) ); else cyc2ccl:= []; fi; pref:= UserPreference( "AtlasRep", "AtlasRepDataDirectory" ); datadirs:= [ Directory( Concatenation( pref, "dataword" ) ) ]; for entry in record.cyclic do # Check the `cyc2ccl' scripts available. tomatch:= Filtered( entry[2], x -> x <> '-' ); cyc2ccl:= Filtered( cyc2ccl, x -> x[1] = tomatch ); if IsEmpty( cyc2ccl ) then # There is no `cyc2ccl' script but perhaps we can create it. str:= StringOfAtlasProgramCycToCcls( StringFile( Filename( datadirs, entry[2] ) ), tbl, "names" ); if str <> fail then prg:= ScanStraightLineProgram( str, "string" ); if prg = fail then Print( "#E automatically created script for `", tomatch, "-cclsW1' would be incorrect" ); fi; prg:= prg.program; #T check the composition? Print( "#I add the following script, in the new file `", tomatch, "-cclsW1':\n", str, "\n" ); result:= false; fi; fi; od; fi; elif IsEmpty( arg ) then for triple in AtlasOfGroupRepresentationsInfo.groupnames do result:= AGR.Test.CycToCcls( triple[3] ) and result; od; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.GroupOrders( [true] ) ## ## <#GAPDoc Label="test:AGR.Test.GroupOrders"> ## <Mark><C>AGR.Test.GroupOrders()</C></Mark> ## <Item> ## checks whether the group orders stored in the <C>GAPnames</C> component ## of <Ref Var="AtlasOfGroupRepresentationsInfo"/> coincide with the ## group orders computed from an &ATLAS; permutation representation of ## degree up to <C>AGR.Test.MaxTestDegree</C>, ## from the character table or the table of marks with the given name, ## or from the structure of the name. ## Supported is a splitting of the name at the first dot (<C>.</C>), ## where the two parts of the name are examined with the same criteria in ## order to derive the group order. ## </Item> ## <#/GAPDoc> ## AGR.Test.GroupOrders:= function( arg ) local verbose, formats, maxdeg, SizesFromName, result, entry, size; verbose:= ( Length( arg ) <> 0 and arg[1] = true ); formats:= [ [ [ "L", IsDigitChar, "(", IsDigitChar, ")" ], l -> Size( PSL( l[2], l[4] ) ) ], [ [ "2.L", IsDigitChar, "(", IsDigitChar, ")" ], l -> 2 * Size( PSL( l[2], l[4] ) ) ], [ [ "S", IsDigitChar, "(", IsDigitChar, ")" ], l -> Size( PSp( l[2], l[4] ) ) ], [ [ "2.S", IsDigitChar, "(", IsDigitChar, ")" ], l -> 2 * Size( PSp( l[2], l[4] ) ) ], [ [ "U", IsDigitChar, "(", IsDigitChar, ")" ], l -> Size( PSU( l[2], l[4] ) ) ], ]; maxdeg:= AGR.Test.MaxTestDegree; SizesFromName:= function( name ) local result, pair, parse, tbl, tom, flag, data, pos, size1, size2; result:= []; # Deal with the case of integers. if ForAll( name, x -> IsDigitChar( x ) or x = '^' ) then #T improve: admit also brackets and '+' (problem of *matching* brackets) # No other criterion matches with this format, so we return. return [ EvalString( name ) ]; fi; for pair in formats do parse:= ParseBackwards( name, pair[1] ); if parse <> fail then AddSet( result, pair[2]( parse ) ); fi; od; # Try to use the character table information. tbl:= CharacterTable( name ); if tbl <> fail then AddSet( result, Size( tbl ) ); fi; # Try to use the table of marks information. tom:= TableOfMarks( name ); if tom <> fail then AddSet( result, Size( UnderlyingGroup( tom ) ) ); fi; # Try to use the (locally available) database. flag:= AtlasOfGroupRepresentationsInfo.remote; AtlasOfGroupRepresentationsInfo.remote:= false; data:= OneAtlasGeneratingSetInfo( name, NrMovedPoints, [ 1 .. maxdeg ] ); # if data = fail then # data:= OneAtlasGeneratingSetInfo( name, # Dimension, [ 1 .. 10 ] ); # fi; if data <> fail then data:= AtlasGenerators( data ); if data <> fail then AddSet( result, Size( Group( data.generators ) ) ); fi; fi; AtlasOfGroupRepresentationsInfo.remote:= flag; # Try to evaluate the name structure. pos:= Position( name, '.' ); #T improve: split also at ':' if pos <> fail then size1:= SizesFromName( name{ [ 1 .. pos-1 ] } ); size2:= SizesFromName( name{ [ pos+1 .. Length( name ) ] } ); if Length( size1 ) = 1 and Length( size2 ) = 1 then AddSet( result, size1[1] * size2[1] ); elif Length( size1 ) > 1 or Length( size2 ) > 1 then Print( "#E group orders: problem with `", name, "'\n" ); fi; fi; return result; end; result:= true; for entry in AtlasOfGroupRepresentationsInfo.GAPnames do size:= SizesFromName( entry[1] ); if 1 < Length( size ) then Print( "#E AGR.Test.GroupOrders: several group orders for `", entry[1], "':\n#E ", size, "\n" ); result:= false; elif not IsBound( entry[3].size ) then if Length( size ) = 0 then if verbose then Print( "#I AGR.Test.GroupOrders: group order for `", entry[1], "' unknown\n" ); fi; else entry[3].size:= size[1]; Print( "#I AGR.Test.GroupOrders: set group order for `", entry[1], "'\n", "AGR.GRS(\"", entry[1], "\",", size[1], ");\n" ); fi; elif Length( size ) = 0 then if verbose then Print( "#I AGR.Test.GroupOrders: cannot verify group order for `", entry[1], "'\n" ); fi; elif size[1] <> entry[3].size then Print( "#E AGR.Test.GroupOrders: wrong group order for `", entry[1], "'\n" ); result:= false; fi; od; return result; end; ############################################################################# ## #F AGR.IsKernelInFrattiniSubgroup( <tbl>, <factfus> ) ## ## We try to deduce the orders of maximal subgroups from those of factor ## groups. ## Namely, if <M>K</M> is a normal subgroup in <M>G</M> such that <M>K</M> ## is contained in the Frattini subgroup <M>\Phi(G)</M> of <M>G</M> ## (i. e., contained in any maximal subgroup of <M>G</M>) ## then the maximal subgroups of <M>G</M> are exactly the preimages of the ## maximal subgroups of <M>G/K</M> under the natural epimorphism. ## <P/> ## Since <M>G' \cap Z(G) \leq \Phi(G)</M>, this situation occurs in the case ## of central extensions of perfect groups, ## for example the orders of the maximal subgroups of <M>3.A_6</M> are ## the orders of the maximal subgroups of <M>A_6</M>, multiplied by the ## factor three. ## <P/> ## Since <M>\Phi(N) \leq \Phi(G)</M> holds for any normal subgroup <M>N</M> ## of <M>G</M> ## (see <Cite Key="Hup67" SubKey="Kap. III, §3, Hilfssatz 3.3 b)"/>), ## this situation occurs in the case of upward extensions of central ## extensions of perfect groups, ## for example the orders of the maximal subgroups of <M>3.A_6.2_1</M> are ## the orders of the maximal subgroups of <M>A_6.2_1</M>, multiplied by the ## factor three. ## AGR.IsKernelInFrattiniSubgroup:= function( tbl, factfus ) local ker, nam, subtbl, subfus, subker; # Compute the kernel <M>K</M> of the epimorphism. ker:= ClassPositionsOfKernel( factfus.map ); if Length( ker ) = 1 or not IsSubset( ClassPositionsOfDerivedSubgroup( tbl ), ker ) then return false; elif IsSubset( ClassPositionsOfCentre( tbl ), ker ) then # We have <M>K \leq G' \cap Z(G)</M>, # so the maximal subgroups are exactly the preimages of the # maximal subgroups in the factor group. return true; fi; # Look for a suitable normal subgroup <M>N</M> of <M>G</M>. for nam in NamesOfFusionSources( tbl ) do subtbl:= CharacterTable( nam ); subfus:= GetFusionMap( subtbl, tbl ); if Size( subtbl ) = Sum( SizesConjugacyClasses( tbl ){ Set( subfus ) } ) and IsSubset( subfus, ker ) then # <M>N</M> is normal in <M>G</M>, with <M>K \leq N</M> subker:= Filtered( [ 1 .. Length( subfus ) ], i -> subfus[i] in ker ); if IsSubset( ClassPositionsOfDerivedSubgroup( subtbl ), subker ) and IsSubset( ClassPositionsOfCentre( subtbl ), subker ) then # We have <M>K \leq N' \cap Z(N)</M>. return true; fi; fi; od; return false; end; ############################################################################# ## #F AGR.Test.MaxesOrders( [true] ) ## ## <#GAPDoc Label="test:AGR.Test.MaxesOrders"> ## <Mark><C>AGR.Test.MaxesOrders()</C></Mark> ## <Item> ## checks whether the orders of maximal subgroups stored in the component ## <C>GAPnames</C> of <Ref Var="AtlasOfGroupRepresentationsInfo"/> ## coincide with the orders computed from the restriction of an &ATLAS; ## permutation representation of degree up to ## <C>AGR.Test.MaxTestDegree</C>, ## from the character table, or the table of marks with the given name, ## or from the information about maximal subgroups of a factor group ## modulo a normal subgroup that is contained in the Frattini subgroup. ## </Item> ## <#/GAPDoc> ## AGR.Test.MaxesOrders:= function( arg ) local verbose, maxdeg, maxmax, MaxesInfoForName, result, toc, entry, info, size, struct; verbose:= ( Length( arg ) <> 0 and arg[1] = true ); maxdeg:= AGR.Test.MaxTestDegree; maxmax:= AGR.Test.HardCases.MaxNumberMaxes; MaxesInfoForName:= function( name ) local result, nrmaxes, tbl, oneresult, i, subtbl, tom, std, data, prg, gens, factfus, recurs, good; result:= []; nrmaxes:= []; # Try to use the character table information. tbl:= CharacterTable( name ); if tbl <> fail then if HasMaxes( tbl ) then AddSet( nrmaxes, Length( Maxes( tbl ) ) ); AddSet( result, List( Maxes( tbl ), nam -> Size( CharacterTable( nam ) ) ) ); else # Try whether individual maxes are supported. oneresult:= []; if tbl <> fail then for i in [ 1 .. maxmax ] do subtbl:= CharacterTable( Concatenation( Identifier( tbl ), "M", String( i ) ) ); if subtbl <> fail then oneresult[i]:= Size( subtbl ); fi; od; fi; if not IsEmpty( oneresult ) then AddSet( result, oneresult ); fi; fi; fi; # Try to use the table of marks information. # more tests: how to identify FusionsToLibTom( tom )? tom:= TableOfMarks( name ); if tom <> fail then AddSet( nrmaxes, Length( MaximalSubgroupsTom( tom )[1] ) ); AddSet( result, Reversed( SortedList( OrdersTom( tom ){ MaximalSubgroupsTom( tom )[1] } ) ) ); fi; # Try to use the database. for std in [ 1 .. AGR.Test.HardCases.MaxNumberStd ] do data:= OneAtlasGeneratingSetInfo( name, std, NrMovedPoints, [ 1 .. maxdeg ] ); # if data = fail then # data:= OneAtlasGeneratingSetInfo( name, std, # Dimension, [ 1 .. 10 ] ); # fi; if data <> fail then data:= AtlasGenerators( data ); if data <> fail then oneresult:= []; for i in [ 1 .. maxmax ] do prg:= AtlasProgram( name, std, "maxes", i ); if prg <> fail then gens:= ResultOfStraightLineProgram( prg.program, data.generators ); oneresult[i]:= Size( Group( gens ) ); fi; od; if not IsEmpty( oneresult ) then AddSet( result, oneresult ); fi; fi; fi; od; # Try to deduce the orders of maximal subgroups from those of factors. if tbl <> fail then for factfus in ComputedClassFusions( tbl ) do if AGR.IsKernelInFrattiniSubgroup( tbl, factfus ) then recurs:= MaxesInfoForName( factfus.name ); UniteSet( nrmaxes, recurs.nrmaxes ); UniteSet( result, recurs.maxesorders * Sum( SizesConjugacyClasses( tbl ){ ClassPositionsOfKernel( factfus.map ) } ) ); fi; od; fi; # Compact the partial results. good:= true; for oneresult in result{ [ 2 .. Length( result ) ] } do for i in [ 1 .. Length( oneresult ) ] do if IsBound( result[1][i] ) then if IsBound( oneresult[i] ) then if result[1][i] <> oneresult[i] then good:= false; fi; fi; elif IsBound( oneresult[i] ) then result[1][i]:= oneresult[i]; fi; od; od; if good and not IsEmpty( result ) then result:= [ result[1] ]; fi; return rec( maxesorders:= result, nrmaxes:= Set( nrmaxes ) ); end; result:= true; toc:= AtlasOfGroupRepresentationsInfo.TableOfContents.remote; for entry in AtlasOfGroupRepresentationsInfo.GAPnames do info:= MaxesInfoForName( entry[1] ); if not IsBound( entry[3].nrMaxes ) then if Length( info.nrmaxes ) = 1 then Print( "#I AGR.MXN: set maxes number for `", entry[1], "':\n", "AGR.MXN(\"", entry[1], "\",", info.nrmaxes[1], ");\n" ); fi; elif Length( info.nrmaxes ) <> 1 then if verbose then Print( "#I AGR.MXN: cannot verify stored maxes number ", "for `", entry[1], "'\n" ); fi; fi; size:= info.maxesorders; if 1 < Length( size ) then Print( "#E AGR.Test.MaxesOrders: several maxes orders for `", entry[1], "':\n#E ", size, "\n" ); result:= false; elif not IsBound( entry[3].sizesMaxes ) or IsEmpty( entry[3].sizesMaxes ) then # No maxes orders are stored yet. if Length( size ) = 0 then if verbose or ( IsBound( toc.( entry[2] ) ) and IsBound( toc.( entry[2] ).maxes ) and not IsEmpty( toc.( entry[2] ).maxes ) ) then Print( "#I AGR.Test.MaxesOrders: maxes orders for `", entry[1], "' unknown\n" ); fi; else if IsBound( entry[3].size ) then if entry[3].size in size[1] then Print( "#E AGR.Test.MaxesOrders: group order in maxes ", "orders list for `", entry[1], "'\n" ); result:= false; fi; if ForAny( size[1], x -> entry[3].size mod x <> 0 ) then Print( "#E AGR.Test.MaxesOrders: strange subgp. order for `", entry[1], "'\n" ); result:= false; fi; fi; if IsSortedList( - Compacted( size[1] ) ) then entry[3].sizesMaxes:= size[1]; Print( "#I AGR.Test.MaxesOrders: set maxes orders for `", entry[1], "':\n" ); Print( "AGR.MXO(\"", entry[1], "\",", Filtered( String( size[1] ), x -> x <> ' ' ), ");\n" ); else Print( "#E AGR.Test.MaxesOrders: computed maxes orders for `", entry[1], "' are not sorted:\n", size[1], "\n" ); fi; fi; elif Length( size ) = 0 then if verbose then Print( "#I AGR.Test.MaxesOrders: cannot verify stored ", "maxes orders for `", entry[1], "'\n" ); fi; elif not IsSortedList( - Compacted( size[1] ) ) then Print( "#E AGR.Test.MaxesOrders: computed maxes orders for `", entry[1], "' are not sorted:\n", size[1], "\n" ); elif size[1] <> entry[3].sizesMaxes then Print( "#E AGR.Test.MaxesOrders: computed and stored ", "maxes orders for `", entry[1], "' differ:\n" ); Print( "#E ", size[1], " vs. ", entry[3].sizesMaxes, "\n" ); result:= false; fi; od; return result; end; ############################################################################# ## #F AGR.Test.MaxesStructure( [true] ) ## ## <#GAPDoc Label="test:AGR.Test.MaxesStructure"> ## <Mark><C>AGR.Test.MaxesStructure()</C></Mark> ## <Item> ## checks whether the names of maximal subgroups stored in the component ## <C>GAPnames</C> of <Ref Var="AtlasOfGroupRepresentationsInfo"/> ## coincide with the names computed from the &GAP; character table with ## the given name. ## </Item> ## <#/GAPDoc> ## AGR.Test.SubgroupData:= function( arg ) local verbose, maxdeg, maxmax, MaxesInfoForName, result, toc, entry, info, size, struct; verbose:= ( Length( arg ) <> 0 and arg[1] = true ); maxdeg:= AGR.Test.MaxTestDegree; maxmax:= AGR.Test.HardCases.MaxNumberMaxes; MaxesInfoForName:= function( name ) local result, tbl, oneresult, i, subtbl, tom, std, data, prg, gens, factfus, recurs, good; result:= []; # Try to use the character table information. tbl:= CharacterTable( name ); if tbl <> fail then if HasMaxes( tbl ) then AddSet( result, List( Maxes( tbl ), AGR.StructureDescriptionCharacterTableName ) ); else # Try whether individual maxes are supported. oneresult:= []; if tbl <> fail then for i in [ 1 .. maxmax ] do subtbl:= CharacterTable( Concatenation( Identifier( tbl ), "M", String( i ) ) ); if subtbl <> fail then oneresult[i]:= AGR.StructureDescriptionCharacterTableName( Identifier( subtbl ) ); fi; od; fi; if not IsEmpty( oneresult ) then AddSet( result, oneresult ); fi; fi; fi; # Compact the partial results. good:= true; for oneresult in result{ [ 2 .. Length( result ) ] } do for i in [ 1 .. Length( oneresult ) ] do if IsBound( result[1][i] ) then if IsBound( oneresult[i] ) then if result[1][i] <> oneresult[i] then good:= false; fi; fi; elif IsBound( oneresult[i] ) then result[1][i]:= oneresult[i]; fi; od; od; if good and not IsEmpty( result ) then result:= [ result[1] ]; fi; return rec( maxesstructure:= result ); end; result:= true; toc:= AtlasOfGroupRepresentationsInfo.TableOfContents.remote; for entry in AtlasOfGroupRepresentationsInfo.GAPnames do info:= MaxesInfoForName( entry[1] ); struct:= info.maxesstructure; if 1 < Length( struct ) then Print( "#E AGR.Test.MaxesStructure: several maxes structures for `", entry[1], "':\n#E ", struct, "\n" ); result:= false; elif not IsBound( entry[3].structureMaxes ) then # No maxes structures are stored yet. if Length( struct ) = 0 then if verbose or ( IsBound( toc.( entry[2] ) ) and IsBound( toc.( entry[2] ).maxes ) and not IsEmpty( toc.( entry[2] ).maxes ) ) then Print( "#I AGR.Test.MaxesStructure: maxes structures for `", entry[1], "' unknown\n" ); fi; elif Length( struct ) = 1 then Print( "#I AGR.Test.MaxesStructure: set maxes structures for `", entry[1], "':\n", "AGR.MXS(\"", entry[1], "\",", Filtered( String( struct[1] ), x -> x <> ' ' ), ");\n" ); fi; elif Length( struct ) = 0 then if verbose then Print( "#I AGR.Test.MaxesStructure: cannot verify stored ", "maxes structures for `", entry[1], "'\n" ); fi; elif struct[1] <> entry[3].structureMaxes then Print( "#E AGR.Test.MaxesStructure: computed and stored ", "maxes structures for `", entry[1], "' differ:\n" ); Print( "#E ", struct[1], " vs. ", entry[3].structureMaxes, "\n" ); result:= false; fi; od; return result; end; ############################################################################# ## #F AGR.Test.StdCompatibility( [[<entry>, ]<verbose>] ) ## ## <#GAPDoc Label="test:AGR.Test.StdCompatibility"> ## <Mark><C>AGR.Test.StdCompatibility()</C></Mark> ## <Item> ## checks whether the information about the compatibility of ## standard generators of a group and its factor groups that is stored in ## the <C>GAPnames</C> component of ## <Ref Var="AtlasOfGroupRepresentationsInfo"/> ## coincides with computed values. ## <P/> ## The following criterion is used for computing the value for a group ## <M>G</M>. ## Use the &GAP; Character Table Library to determine factor groups ## <M>F</M> of <M>G</M> for which standard generators are defined and ## moreover a presentation in terms of these standard generators is known. ## Evaluate the relators of the presentation in the standard generators of ## <M>G</M>, and let <M>N</M> be the normal closure of these elements in ## <M>G</M>. ## Then mapping the standard generators of <M>F</M> to the <M>N</M>-cosets ## of the standard generators of <M>G</M> is an epimorphism. ## If <M>|G/N| = |F|</M> holds then <M>G/N</M> and <M>F</M> are ## isomorphic, and the standard generators of <M>G</M> and <M>F</M> are ## compatible in the sense that mapping the standard generators of ## <M>G</M> to their <M>N</M>-cosets yields standard generators of ## <M>F</M>. ## </Item> ## <#/GAPDoc> ## AGR.Test.StdCompatibility:= function( arg ) local verbose, maxstd, CompInfoForEntry, result, entry, info, l; verbose:= ( Length( arg ) <> 0 and arg[ Length( arg ) ] = true ); maxstd:= AGR.Test.HardCases.MaxNumberStd; CompInfoForEntry:= function( entry ) local result, tbl, flag, fus, factstd, pres, std, gens, prg, res, ker, j, G, F, hom, facttbl; result:= []; tbl:= CharacterTable( entry[1] ); if tbl <> fail then flag:= AtlasOfGroupRepresentationsInfo.remote; AtlasOfGroupRepresentationsInfo.remote:= false; for fus in ComputedClassFusions( tbl ) do if 1 < Length( ClassPositionsOfKernel( fus.map ) ) then if AGR.InfoForName( fus.name ) <> fail then for factstd in [ 1 .. maxstd ] do pres:= AtlasProgram( fus.name, factstd, "presentation" ); if pres <> fail then # The two sets of generators are compatible iff the # relators in terms of the generators of the big group # generate the kernel of the epimorphism. for std in [ 1 .. maxstd ] do gens:= OneAtlasGeneratingSetInfo( entry[1], std ); if gens <> fail then gens:= AtlasGenerators( gens.identifier ); fi; if gens <> fail then prg:= StraightLineProgramFromStraightLineDecision( pres.program ); res:= ResultOfStraightLineProgram( prg, gens.generators ); ker:= Group( res ); # `ker' is assumed to be a very small group. if Size( tbl ) / Size( CharacterTable( fus.name ) ) = Size( ker ) then Add( result, [ std, fus.name, factstd, true ] ); else Add( result, [ std, fus.name, factstd, false ] ); fi; fi; od; else # Try to form the homomorphism object in GAP, # by mapping generators of the big group to generators # of the factor group. # If this defines a homomorphism and if this is surjective # then the generators are compatible. for std in [ 1 .. maxstd ] do facttbl:= CharacterTable( fus.name ); if ClassPositionsOfFittingSubgroup( facttbl ) = [1] then # currently classes scripts are available only for these tables, # so other cases are not really interesting at the moment ... G:= AtlasGroup( entry[1], std, IsPermGroup, true ); F:= AtlasGroup( fus.name, factstd, IsPermGroup, true ); if G <> fail and F <> fail then if NrMovedPoints( G ) <= AGR.Test.MaxTestDegree and NrMovedPoints( F ) <= AGR.Test.MaxTestDegree then #Print( "#I trying hom. ", entry[1], " ->> ", fus.name, "\n" ); hom:= GroupHomomorphismByImages( G, F, GeneratorsOfGroup( G ), GeneratorsOfGroup( F ) ); if hom <> fail then Add( result, [ std, fus.name, factstd, true ] ); else Add( result, [ std, fus.name, factstd, false ] ); fi; else #Print( "#I omit hom. ", entry[1], " ->> ", fus.name, ", too many points ...\n" ); fi; elif std = 1 and factstd = 1 then #Print( "#I no hom. ", entry[1], " ->> ", fus.name, " to try?\n" ); fi; fi; od; fi; od; fi; fi; od; AtlasOfGroupRepresentationsInfo.remote:= flag; fi; return result; end; result:= true; if Length( arg ) = 0 or ( Length( arg ) = 1 and IsBool( arg[1] ) ) then for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.StdCompatibility( entry, verbose ) and result; od; else entry:= arg[1]; info:= CompInfoForEntry( entry ); if not IsBound( entry[3].factorCompatibility ) then entry[3].factorCompatibility:= []; fi; if info <> entry[3].factorCompatibility then if verbose then Print( "#I AGR.Test.StdCompatibility: change compatibility info\n" ); for l in info do #T can be empty! Print( "AGR.STDCOMP(\"", entry[1], "\",", Filtered( String( l ), x -> x <> ' ' ), ");\n" ); od; fi; fi; if verbose then for l in Difference( entry[3].factorCompatibility, info ) do Print( "#I AGR.Test.StdCompatibility: cannot verify compatibility ", "info `", l, "' for `", entry[1], "'\n" ); od; fi; if ForAny( entry[3].factorCompatibility, l1 -> ForAny( info, l2 -> l1{[1..3]} = l2{[1..3]} and ( l1[4] <> l2[4] ) ) ) then Print( "#E AGR.Test.StdCompatibility: contradiction of ", "compatibility info for `", entry[1], "'\n" ); result:= false; fi; fi; return result; end; ############################################################################# ## #F AGR.Test.CompatibleMaxes( [[<entry>, ]<verbose>] ) ## ## <#GAPDoc Label="test:AGR.Test.CompatibleMaxes"> ## <Mark><C>AGR.Test.CompatibleMaxes()</C></Mark> ## <Item> ## checks whether the information about deriving straight line programs ## for restricting to subgroups from straight line programs that belong ## to a factor group coincide with computed values. ## <P/> ## The following criterion is used for computing the value for a group ## <M>G</M>. ## If <M>F</M> is a factor group of <M>G</M> such that the standard ## generators of <M>G</M> and <M>F</M> are compatible ## (see the test function <C>AGR.Test.StdCompatibility</C>) ## and if there are a presentation for <M>F</M> and a permutation ## representation of <M>G</M> then it is checked whether the ## <C>"maxes"</C> type straight line programs for <M>F</M> can be used to ## compute generators for the maximal subgroups of <M>G</M>; ## if not then generators of the kernel of the natural epimorphism from ## <M>G</M> to <M>F</M>, must be added. ## </Item> ## <#/GAPDoc> ## AGR.Test.CompatibleMaxes:= function( arg ) local verbose, maxdeg, maxmax, CompMaxForEntry, result, toc, entry, info, stored, entry2, filt; verbose:= Length( arg ) <> 0 and arg[ Length( arg ) ] = true; maxdeg:= AGR.Test.MaxTestDegree; maxmax:= AGR.Test.HardCases.MaxNumberMaxes; CompMaxForEntry:= function( entry ) local result, tbl, l, factname, factstd, gens, i, prg, max; result:= []; tbl:= CharacterTable( entry[1] ); if tbl <> fail and IsBound( entry[3].sizesMaxes ) and IsBound( entry[3].factorCompatibility ) then # Maxes orders info and compatibility info are known. for l in Filtered( entry[3].factorCompatibility, x -> x[4] = true ) do # Check whether the maxes of the two groups are in bijection. factname:= l[2]; factstd:= l[3]; if ForAny( ComputedClassFusions( tbl ), fus -> fus.name = factname and AGR.IsKernelInFrattiniSubgroup( tbl, fus ) ) then gens:= OneAtlasGeneratingSetInfo( entry[1], l[1], NrMovedPoints, [ 1 .. maxdeg ] ); if gens <> fail then gens:= AtlasGenerators( gens.identifier ); fi; if gens <> fail then for i in [ 1 .. maxmax ] do prg:= AtlasProgram( factname, factstd, "maxes", i ); if prg <> fail and IsBound( entry[3].sizesMaxes[i] ) then # try the program for the ext. gp. max:= ResultOfStraightLineProgram( prg.program, gens.generators ); max:= Group( max ); if Size( max ) = entry[3].sizesMaxes[i] then # The program for the factor group is sufficient. Add( result, [ entry[2], factstd, i, [ prg.identifier[2] ] ] ); elif not IsBound( entry[3].kernelPrograms ) or ForAll( entry[3].kernelPrograms, x -> x[2] <> factname ) then Print( "#I SLP for kernel generators of ", entry[1], " ->> ", factname, " missing ", "\n#I (needed for max. ", i, ")\n" ); fi; fi; od; fi; fi; od; fi; return result; end; result:= true; toc:= AtlasOfGroupRepresentationsInfo.TableOfContents.remote; if Length( arg ) = 0 or ( Length( arg ) = 1 and IsBool( arg[1] ) ) then for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.CompatibleMaxes( entry, verbose ) and result; od; else entry:= arg[1]; info:= CompMaxForEntry( entry ); stored:= []; if IsBound( toc.( entry[2] ) ) and IsBound( toc.( entry[2] ).maxext ) then stored:= List( toc.( entry[2] ).maxext, x -> Concatenation( [ entry[2] ], x ) ); fi; for entry2 in info do filt:= Filtered( stored, x -> x{ [ 1 .. 3 ] } = entry2{ [ 1 .. 3 ] } and x[4][1] = entry2[4][1] ); if IsEmpty( filt ) then # The entry is new. if Length( entry2[4] ) = 1 then # The script for restricting the repres. of the factor group # is good enough for the group. Print( "#I AGR.TOCEXT: set entry\nAGR.TOCEXT(\"", entry2[1], "\",", entry2[2], ",", entry2[3], ",[\"", entry2[4][1], "\"]);\n" ); else # For restricting a repres. of the group, one needs the script # for the factor group plus some kernel elements. Print( "#I AGR.TOCEXT: set entry\nAGR.TOCEXT(\"", entry2[1], "\",", entry2[2], ",", entry2[3], ",[\"", entry2[4][1], "\",\"", entry2[4][2], "\"]);\n" ); fi; elif Length( entry2[4] ) <> Length( filt[1][4] ) then if Length( entry2[4] ) = 3 and Length( filt[1][4] ) = 2 then if entry2[4]{ [ 1, 2 ] } <> filt[1][4] then # We have already such an entry but it is different. Print( "#E AGR.TOCEXT: difference ", entry2, " vs. ", filt[1], "\n" ); result:= false; fi; #T check also equality of the script with a stored one if applicable! else # We have already such an entry but it is different. Print( "#E AGR.TOCEXT: difference ", entry2, " vs. ", filt[1], "\n" ); result:= false; fi; fi; od; for entry2 in stored do filt:= Filtered( info, x -> x{ [ 1 .. 3 ] } = entry2{ [ 1 .. 3 ] } and x[4][1] = entry2[4][1] ); if IsEmpty( filt ) then Print( "#I AGR.TOCEXT: cannot verify stored value ", entry2, "\n" ); fi; od; fi; return result; end; ############################################################################# ## #F AGR.IsEquivalentSLP( <lines1>, <lines2> ) ## ## simpleminded function; eventually better evaluate standard generators ## of the group in question ## AGR.IsEquivalentSLP:= function( lines1, lines2 ) local n, slp1, slp2, f, gens; if lines1 = lines2 then return true; fi; n:= 2; slp1:= StraightLineProgram( lines1, n ); slp2:= StraightLineProgram( lines2, n ); f:= FreeGroup( n ); gens:= GeneratorsOfGroup( f ); if ResultOfStraightLineProgram( slp1, gens ) = ResultOfStraightLineProgram( slp2, gens ) then return true; else return false; fi; end; ############################################################################# ## #F AGR.Test.KernelGenerators( [[<entry>, ]<verbose>] ) ## ## <#GAPDoc Label="test:AGR.Test.KernelGenerators"> ## <Mark><C>AGR.Test.KernelGenerators()</C></Mark> ## <Item> ## checks whether the information stored in the <C>GAPnames</C> component ## of <Ref Var="AtlasOfGroupRepresentationsInfo"/> about ## straight line programs for computing generators of the kernels of ## natural epimorphisms between &ATLAS; groups ## coincides with computed values. ## <P/> ## The following criterion is used for computing the value for a group ## <M>G</M>. ## Use the &GAP; Character Table Library to determine factor groups ## <M>F</M> of <M>G</M> for which standard generators are defined ## such that mapping standard generators of <M>G</M> to those of ## <M>F</M> defines a homomorphism, and such that a presentation of ## <M>F</M> in terms of its standard generators is known. ## Evaluating the relators of the presentation in the standard generators ## of <M>G</M> yields normal subgroup generators for the kernel. ## <P/> ## A message is printed for each group name ## for which some straight line program for computing kernel generators ## was not stored but now was computed, ## or for which the stored info cannot be verified, ## </Item> ## <#/GAPDoc> ## AGR.Test.KernelGenerators:= function( arg ) local verbose, maxstd, CompInfoForEntry, result, pos, entry, new, old, i, l; verbose:= ( Length( arg ) <> 0 and arg[ Length( arg ) ] = true ); maxstd:= AGR.Test.HardCases.MaxNumberStd; CompInfoForEntry:= function( entry ) local result, info, std, factname, factstd, pres, gens, prg, res, ker, perm, words, kergens, sub, j, lines, G, F, hom, free, freegens, freestrs, iter, addprgs, w, ord, elm, facttbl; result:= []; for info in Filtered( entry[3].factorCompatibility, x -> x[4] = true ) do #T compute kernel generators also in other cases? #T where does this happen? and how do we get the homomorphism then? std:= info[1]; factname:= info[2]; factstd:= info[3]; if AGR.InfoForName( factname ) <> fail then pres:= AtlasProgram( factname, factstd, "presentation" ); if pres <> fail then # The two sets of generators are compatible. gens:= OneAtlasGeneratingSetInfo( entry[1], std ); if gens <> fail then gens:= AtlasGenerators( gens.identifier ); fi; if gens <> fail then prg:= StraightLineProgramFromStraightLineDecision( pres.program ); res:= ResultOfStraightLineProgram( prg, gens.generators ); ker:= Group( res ); # `ker' is assumed to be a very small group. # Create a script for generators of the kernel. perm:= Sortex( -List( res, Order ) ); res:= Permuted( res, perm ); words:= Permuted( [ 1 .. Length( res ) ], perm ); kergens:= [ words[1] ]; sub:= SubgroupNC( ker, [ res[1] ] ); j:= 1; while j <= Length( words ) and Size( sub ) <> Size( ker ) do j:= j+1; Add( kergens, words[j] ); sub:= ClosureGroup( sub, res[j] ); od; if Size( sub ) = Size( ker ) then lines:= LinesOfStraightLineProgram( RestrictOutputsOfSLP( prg, kergens ) ); Add( result, [ std, factname, lines ] ); else Print( "#I ", entry[1], ": not enough generators for the kernel found\n" ); fi; fi; else # Try to form the homomorphism object in GAP, # by mapping generators of the big group to generators # of the factor group. # If this defines a homomorphism and if this is surjective # then the generators are compatible. # For example, both 2.J2.2 and Isoclinic(2.J2.2) map to J2.2; # then also the maxes can be identified etc. facttbl:= CharacterTable( factname ); if ClassPositionsOfFittingSubgroup( facttbl ) = [1] then # currently classes scripts are available only for these tables, # so other cases are not really interesting at the moment ... G:= AtlasGroup( entry[1], std, IsPermGroup, true ); F:= AtlasGroup( factname, factstd, IsPermGroup, true ); if G <> fail and F <> fail then if NrMovedPoints( G ) <= AGR.Test.MaxTestDegree and NrMovedPoints( F ) <= AGR.Test.MaxTestDegree then #Print( "#I trying hom. ", entry[1], " ->> ", factname, "\n" ); hom:= GroupHomomorphismByImagesNC( G, F, GeneratorsOfGroup( G ), GeneratorsOfGroup( F ) ); if hom <> fail then # Find a script for generators of the kernel. free:= FreeSemigroup( Length( GeneratorsOfGroup( G ) ) ); freegens:= GeneratorsOfSemigroup( free ); freestrs:= List( freegens, String ); iter:= Iterator( free ); ker:= TrivialSubgroup( G ); addprgs:= []; while Size( ker ) * Size( F ) <> Size( G ) do w:= NextIterator( iter ); ord:= Order( MappedWord( w, freegens, GeneratorsOfGroup( F ) ) ); elm:= MappedWord( w, freegens, GeneratorsOfGroup( G ) )^ord; if not elm in ker then Add( addprgs, CompositionOfStraightLinePrograms( StraightLineProgram( [ [ [ 1, ord ], 2 ] ] ), StraightLineProgramNC( String( w ), freestrs ) ) ); ker:= ClosureGroup( ker, elm ); fi; od; lines:= LinesOfStraightLineProgram( IntegratedStraightLineProgram( addprgs ) ); Add( result, [ std, factname, lines ] ); fi; else #Print( "#I omit hom. ", entry[1], " ->> ", factname, ", too many points ...\n" ); fi; elif std = 1 and factstd = 1 then #Print( "#I no hom. ", entry[1], " ->> ", factname, " to try?\n" ); # fi; fi; fi; fi; fi; od; return result; end; result:= true; if Length( arg ) = 0 or ( Length( arg ) = 1 and IsBool( arg[1] ) ) then for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.KernelGenerators( entry, verbose ) and result; od; elif IsBound( arg[1][3].factorCompatibility ) then entry:= arg[1]; new:= CompInfoForEntry( entry ); if IsBound( entry[3].kernelPrograms ) then old:= ShallowCopy( entry[3].kernelPrograms ); else old:= []; fi; for i in [ 1 .. Length( old ) ] do pos:= Position( new, old[i] ); if pos <> fail then Unbind( old[i] ); Unbind( new[ pos ] ); else pos:= PositionProperty( new, l -> old[i]{[1..2]} = l{[1..2]} ); if pos <> fail then if AGR.IsEquivalentSLP( old[i][3], new[ pos ][3] ) then Unbind( old[i] ); Unbind( new[ pos ] ); else Print( "#E AGR.Test.KernelGenerators: contradiction of ", "kernel info for `", entry[1], "' at\n", "#E ", old[i], "\n" ); result:= false; fi; fi; fi; od; for l in new do Print( "#I AGR.Test.KernelGenerators: add kernel info\n", "AGR.KERPRG(\"", entry[1], "\",", Filtered( String( l ), x -> x <> ' ' ), ");\n" ); od; for l in old do Print( "#I AGR.Test.KernelGenerators: cannot verify kernel ", "info `", l, "' for `", entry[1], "'\n" ); od; fi; return result; end; ############################################################################# ## #F AGR.CharacterNameFromMultiplicities( <tbl>, <mults> ) ## ## - to be used for tables of perfect groups only; ## in other cases, relative names should be used ## - see also `MFER.PermCharInfo_ATLAS_FromCoefficients' ## (which works only for mult.-free characters) ## AGR.CharacterNameFromMultiplicities:= function( tbl, mults ) local degrees, degreeset, positions, irrnames, i, alp, ATL, j, n, pair; if UnderlyingCharacteristic( tbl ) = 0 then if not IsPerfectCharacterTable( tbl ) then return fail; fi; elif not IsPerfectCharacterTable( OrdinaryCharacterTable( tbl ) ) then return fail; fi; degrees:= List( Irr( tbl ), x -> x[1] ); degreeset:= Set( degrees ); positions:= List( degreeset, x -> [] ); irrnames:= []; for i in [ 1 .. Length( degrees ) ] do Add( positions[ PositionSorted( degreeset, degrees[i] ) ], i ); od; alp:= List( "abcdefghijklmnopqrstuvwxyz", x -> [ x ] ); while Length( alp ) < Maximum( List( positions, Length ) ) do Append( alp, List( alp{ [ 1 .. 26 ] }, x -> Concatenation( "(", x, "')" ) ) ); od; if IsInt( mults ) then mults:= [ mults ]; fi; ATL:= []; for i in [ 1 .. Length( degreeset ) ] do ATL[i]:= ""; for j in [ 1 .. Length( positions[i] ) ] do n:= positions[i][j]; if n in mults then # appears once Append( ATL[i], alp[j] ); else pair:= First( mults, x -> IsList( x ) and x[1] = n ); if pair <> fail then # appears with larger mult. Append( ATL[i], alp[j] ); Append( ATL[i], "^" ); Append( ATL[i], String( pair[2] ) ); fi; fi; od; if ATL[i] <> "" then ATL[i]:= Concatenation( String( degreeset[i] ), ATL[i] ); fi; od; return JoinStringsWithSeparator( Filtered( ATL, x -> x <> "" ), "+" ); end; ############################################################################# ## #F AGR.Test.Characters( [<tocid>[, <name>[, <cond>]]] ) ## ## <#GAPDoc Label="test:AGR.Test.Characters"> ## <Mark><C>AGR.Test.Characters( [<A>tocid</A>] )</C></Mark> ## <Item> ## checks the stored character information for the matrix and permutation ## representations that are stored in the directory with identifier ## <A>tocid</A>. ## </Item> ## <#/GAPDoc> ## AGR.Test.Characters:= function( arg ) local result, name, toc, cond, grpname, tbl, classnames, ccl, cyc, entry, outputs1, std, prg1, poss, nam, ord, parts, outputs, prgs2, info, p, id, modtbl, fus, phi, gens, galoisfams, choice, i, pos, prgs, prg2, repprg, rep, val, dec, j, map, parsed, charpos, test; # Initialize the result. result:= true; if IsEmpty( arg ) then return AGR.Test.Characters( "local" ); elif Length( arg ) = 1 then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.Characters( arg[1], name[1] ) and result; od; return result; elif Length( arg ) = 2 then toc:= AtlasTableOfContents( arg[1] ); name:= arg[2]; cond:= []; elif Length( arg ) = 3 then toc:= AtlasTableOfContents( arg[1] ); name:= arg[2]; cond:= arg[3]; fi; if toc = fail then return true; fi; toc:= toc.TableOfContents; grpname:= AGR.InfoForName( name ); if grpname = fail then Print( "#E no AtlasRep info stored for ", name, "\n" ); return false; elif not IsBound( toc.( grpname[2] ) ) then # This table of contents has no info for `name'. return true; fi; tbl:= CharacterTable( name ); if tbl = fail then # There is nothing to identify. return true; fi; classnames:= AtlasClassNames( tbl ); ccl:= AtlasProgram( name, "classes" ); cyc:= AtlasProgram( name, "cyclic" ); if ccl <> fail then if not IsBound( ccl.outputs ) then Print( "#E no component `outputs' in ccl script for ", name, "\n" ); return false; fi; outputs1:= ccl.outputs; std:= ccl.standardization; prg1:= ccl.program; cyc:= fail; elif cyc <> fail then if not IsBound( cyc.outputs ) then Print( "#E no component `outputs' in cyc script for ", name, "\n" ); return false; fi; outputs1:= cyc.outputs; std:= cyc.standardization; prg1:= cyc.program; # Form all possibilities for proper class names. poss:= []; for nam in outputs1 do if nam in classnames then Add( poss, [ nam ] ); else # Assume that only single letters appear. # L216d4G1-cycW1:echo "Classes 15ABCD 17EFGH 10AB 8A 12A'" # Sz32d5G1-cycW1:echo "Classes 25A-E 31A-O 41A-J 20A-B'''' 25F-F''''" # TD42d3G1-cycW1:echo "Classes 6B 12A 13ABC 18ABC 21ABC 28ABC 6D 12C' 12E 18D' 21D 24A 24B" ord:= nam{ [ 1 .. PositionProperty( nam, IsAlphaChar ) - 1 ] }; if '-' in nam then parts:= SplitString( nam{ [ Length( ord ) + 1 .. Length( nam ) ] }, "-" ); Add( poss, List( Filtered( List( CHARS_UALPHA, x -> [ x ] ), x -> parts[1] <= x and x <= parts[2] ), y -> Concatenation( ord, y ) ) ); else Add( poss, List( nam{ [ Length( ord ) + 1 .. Length( nam ) ] }, y -> Concatenation( ord, [ y ] ) ) ); fi; fi; od; if ForAny( poss, IsEmpty ) then Print( "#E not all classes identified in cyc script for ", name, "\n" ); return false; fi; outputs:= List( Cartesian( poss ), names -> Concatenation( [ "oup ", String( Length( names ) ), " ", JoinStringsWithSeparator( names, " " ), "\n", "echo \"Classes ", JoinStringsWithSeparator( names, " " ), "\"" ] ) ); outputs:= List( outputs, prgstring -> StringOfAtlasProgramCycToCcls( prgstring, tbl, "names" ) ); outputs:= List( outputs, x -> ScanStraightLineProgram( x, "string" ) ); prgs2:= List( outputs, x -> rec( program:= CompositionOfStraightLinePrograms( x.program, prg1 ), outputs:= x.outputs ) ); else # We have no script for computing enough class representatives. return true; fi; for info in CallFuncList( AllAtlasGeneratingSetInfos, Concatenation( [ name, std ], cond ) ) do if IsBound( info.p ) then # a permutation representation p:= 0; id:= info.identifier[2][1]; modtbl:= tbl; fus:= [ 1 .. Length( classnames ) ]; elif Characteristic( info.ring ) = 0 then p:= 0; id:= info.identifier[2]; modtbl:= tbl; fus:= [ 1 .. Length( classnames ) ]; else p:= Characteristic( info.ring ); id:= info.identifier[2][1]; modtbl:= tbl mod p; if modtbl <> fail then fus:= GetFusionMap( modtbl, tbl ); else fus:= fail; fi; fi; id:= id{ [ 1 .. Position( id, '.' )-1 ] }; phi:= fail; if fus = fail then Print( "#I no Brauer table available for identifying ", id, "\n" ); else gens:= AtlasGenerators( info ); if gens <> fail then # Determine representatives of Galois orbits. galoisfams:= GaloisMat( TransposedMat( Irr( modtbl ) ) ).galoisfams; choice:= Filtered( [ 1 .. Length( galoisfams ) ], i -> galoisfams[i] <> 0 ); phi:= []; # Print( "# need ", Length( choice ), " values\n#\c" ); for i in [ 1 .. Length( choice ) ] do pos:= fus[ choice[i] ]; if classnames[ pos ] in outputs1 then # The character value is uniquely determined. prgs:= [ rec( program:= prg1, outputs:= outputs1 ) ]; else # We have to check several possibilities. prgs:= prgs2; fi; for prg2 in prgs do repprg:= RestrictOutputsOfSLP( prg2.program, Position( prg2.outputs, classnames[ pos ] ) ); rep:= ResultOfStraightLineProgram( repprg, gens.generators ); if IsBound( info.p ) then val:= info.p - NrMovedPoints( rep ); elif Characteristic( info.ring ) = 0 then val:= TraceMat( rep ); else val:= BrauerCharacterValue( rep ); fi; if not IsBound( phi[i] ) then phi[i]:= val; elif phi[i] <> val then Print( "#I representation ", id, " yields information about class ", classnames[ pos ], "\n" ); phi:= fail; break; fi; od; if phi = fail then break; fi; # Print( i, " \c"); od; # Print("\n# have them!\n"); if phi = fail then Print( "#I cannot write down character for ", gens.identifier, "\n" ); else dec:= Decomposition( List( Irr( modtbl ), x -> x{ choice } ), [ phi ], "nonnegative" )[1]; if dec = fail then Print( "#I not decomposable character for ", id, ":\n", phi, "\n" ); phi:= fail; else pos:= []; for i in [ 1 .. Length( dec ) ] do if dec[i] = 1 then Add( pos, i ); elif 1 < dec[i] then Add( pos, [ i, dec[i] ] ); fi; od; if Length( pos ) = 1 and IsInt( pos[1] ) then pos:= pos[1]; fi; fi; fi; fi; fi; # Check the character data stored for this representation. map:= AtlasOfGroupRepresentationsInfo.characterinfo; if not IsBound( map.( name ) ) then map.( name ):= []; fi; map:= map.( name ); if p = 0 then charpos:= 1; else charpos:= p; fi; if not IsBound( map[ charpos ] ) then map[ charpos ]:= [ [], [] ]; fi; map:= map[ charpos ]; if phi = fail then # Test that NO character info is stored. if id in map[2] then Print( "#E cannot verify stored character info for ", id, "\n" ); fi; elif id in map[2] then # Test that NO OTHER character info is stored. if map[1][ Position( map[2], id ) ] <> pos then Print( "#E stored and computed character info for `", id, "' differ\n" ); fi; else nam:= AGR.CharacterNameFromMultiplicities( modtbl, pos ); if nam <> fail then # Test whether the character name is compatible with `id'. if IsInt( pos ) then parsed:= AGR.ParseFilenameFormat( id, [ [ [ IsChar ], [ "f", IsDigitChar, "r", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, "B", IsDigitChar, ".m", IsDigitChar ] ], [ ParseBackwards, ParseForwards ] ] ); if ( parsed[8] = "" and nam <> Concatenation( String( parsed[7] ), "a" ) ) or ( parsed[8] <> "" and nam <> Concatenation( String( parsed[7] ), parsed[8] ) ) then Print( "#E character name `", nam, "' contradicts `", id, "'\n" ); fi; fi; fi; pos:= ReplacedString( String( pos ), " ", "" ); Print( "#I add new info\n", "AGR.CHAR(\"", name, "\",\"", id, "\",", p, ",", pos ); if nam <> fail then Print( ",\"", nam, "\"" ); fi; Print( ");\n" ); fi; od; return result; end; ############################################################################# ## #F AGR.PrimitivityInfo( <inforec> ) ## ## <inforec> is a record as returned by `OneAtlasGeneratingSetInfo', ## for a permutation representation. ## ## - If a perm. repres. is intransitive then just compute the orbit lengths. ## - For a transitive perm. repres. of degree n, say, check primitivity: ## - If the restriction to a maximal subgroup fixes a point then ## this maximal subgroup is identified as the point stabilizer. ## - If the the degree is not an index of a maximal subgroup then we know ## that the repres. is not primitive. ## - If the restriction from G to a maximal subgroup M of G has an orbit ## of length n / [G:M] then M contains the point stabilizer; so if the ## restriction to M does not fix a point then the repres. is not ## primitive, and we know a maximal overgroup of the point stabilizer. ## AGR.PrimitivityInfo:= function( inforec ) local gens, gapname, orbs, G, tr, rk, atlasinfo, size, indices, cand, result, i, prg, rest, filt, tbl, max, stab, maxmax, maxcand; gens:= AtlasGenerators( inforec ); if gens <> fail then gens:= gens.generators; gapname:= inforec.groupname; # Check whether the group is transitive. orbs:= OrbitsPerms( gens, [ 1 .. inforec.p ] ); if 1 < Length( orbs ) then return rec( isPrimitive:= false, transitivity:= 0, orbitLengths:= SortedList( List( orbs, Length ) ), comment:= "explicit computation of orbits" ); fi; atlasinfo:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = gapname ); # Compute transitivity and primitivity. G:= Group( gens ); if IsBound( atlasinfo[3].size ) then SetSize( G, atlasinfo[3].size ); fi; tr:= Transitivity( G ); rk:= RankAction( G ); if IsBound( atlasinfo[3].nrMaxes ) and IsBound( atlasinfo[3].sizesMaxes ) and Number( atlasinfo[3].sizesMaxes ) = atlasinfo[3].nrMaxes then size:= Size( G ); indices:= List( atlasinfo[3].sizesMaxes, x -> size / x ); cand:= Filtered( [ 1 .. Length( indices ) ], i -> inforec.p mod indices[i] = 0 ); if inforec.p in indices and Length( cand ) = 1 then # The point stabilizer is contained in a unique class of maxes, # and since the degree occurs as index of a maximal subgroup, # this representation is necessarily primitive. # Moreover, we know the class of maximal subgroups that are # the point stabilizers. result:= rec( isPrimitive:= true, transitivity:= tr, rankAction:= rk, class:= cand[1], comment:= "unique class of maxes for given degree" ); if IsBound( atlasinfo[3].structureMaxes ) and IsBound( atlasinfo[3].structureMaxes[ cand[1] ] ) then result.structure:= atlasinfo[3].structureMaxes[ cand[1] ]; fi; return result; fi; else cand:= [ 1 .. AGR.Test.HardCases.MaxNumberMaxes ]; fi; # Check explicit restrictions to maximal subgroups M. # (If we know their orders then we check only those that can contain # the point stabilizer U.) for i in cand do prg:= AtlasProgram( gapname, "maxes", i ); if prg <> fail then rest:= ResultOfStraightLineProgram( prg.program, gens ); if NrMovedPoints( rest ) < inforec.p then # If the restriction to M fixes a point then M is equal to U. result:= rec( isPrimitive:= true, transitivity:= tr, rankAction:= rk, class:= i, comment:= "restriction fixes a point" ); if IsBound( atlasinfo[3].structureMaxes ) and IsBound( atlasinfo[3].structureMaxes[i] ) then result.structure:= atlasinfo[3].structureMaxes[i]; fi; return result; elif IsBound( atlasinfo[3].sizesMaxes ) and IsBound( atlasinfo[3].sizesMaxes[i] ) then if inforec.p * atlasinfo[3].sizesMaxes[i] / Size( G ) in OrbitLengths( Group( rest ) ) then # The length of the M-orbit of a point is equal to the quotient # |M|/|U|, thus U is a proper subgroup of M. result:= rec( isPrimitive:= false, transitivity:= tr, rankAction:= rk, class:= i, comment:= "restriction contains point stab." ); if IsBound( atlasinfo[3].structureMaxes ) and IsBound( atlasinfo[3].structureMaxes[i] ) then # We know a maximal overgroup M of the stabilizer U. # Try to identify also U itself: # - If U is trivial then nothing is to do. # - If [M:U] is the index of the largest maximal subgroup of M # then take the description of it. # - If [M:U] = 2 and [M:M']_2 = 2 then U is the unique index # two subgroup of M. result.overgroup:= atlasinfo[3].structureMaxes[i]; if inforec.p = Size( G ) then result.subgroup:= "1"; else tbl:= CharacterTable( inforec.groupname ); if tbl <> fail then max:= CharacterTable( result.overgroup ); if max <> fail then if inforec.p * atlasinfo[3].sizesMaxes[i] / Size( G ) = 2 and Length( LinearCharacters( max ) ) mod 4 = 2 then stab:= Filtered( NamesOfFusionSources( max ), u -> Size( CharacterTable( u ) ) = Size( max ) / 2 ); if Length( stab ) = 1 then result.subgroup:= stab[1]; elif HasConstructionInfoCharacterTable( max ) and [ "Cyclic", 2 ] in ConstructionInfoCharacterTable( max )[2] then Error("!"); stab:= Difference( ConstructionInfoCharacterTable( max )[2], [ [ "Cyclic", 2 ] ] ); if Length( stab ) = 1 and Length( stab[1] ) = 1 and IsString( stab[1][1] ) then result.subgroup:= stab[1][1]; Print( "identify ", result.subgroup, "\n\n" ); fi; fi; else maxmax:= CharacterTable( Concatenation( Identifier( max ), "M1" ) ); if maxmax <> fail and inforec.p * atlasinfo[3].sizesMaxes[i] / Size( G ) = Size( max ) / Size( maxmax ) then result.subgroup:= Identifier( maxmax ); fi; fi; fi; fi; fi; fi; return result; fi; fi; fi; od; if IsBound( atlasinfo[3].nrMaxes ) and IsBound( atlasinfo[3].sizesMaxes ) and Number( atlasinfo[3].sizesMaxes ) = atlasinfo[3].nrMaxes and not inforec.p in indices then # This representation is not primitive # but we do not know overgroups. return rec( isPrimitive:= false, transitivity:= tr, rankAction:= rk, comment:= "degree is not an index of a max. subgroup" ); fi; # Check explictly whether the action is primitive. if not IsPrimitive( G, MovedPoints( G ) ) then return rec( isPrimitive:= false, transitivity:= tr, rankAction:= rk, comment:= "explicit check of primitivity" ); fi; # Now we know that the action is primitive. if IsBound( atlasinfo[3].nrMaxes ) and IsBound( atlasinfo[3].sizesMaxes ) and Number( atlasinfo[3].sizesMaxes ) = atlasinfo[3].nrMaxes then maxcand:= Filtered( [ 1 .. Length( indices ) ], i -> inforec.p = indices[i] ); if Length( maxcand ) = 1 then # We know the class. result:= rec( isPrimitive:= true, transitivity:= tr, rankAction:= rk, class:= maxcand[1], comment:= "unique class of maxes for the given degree and prim. action" ); if IsBound( atlasinfo[3].structureMaxes ) and IsBound( atlasinfo[3].structureMaxes[ maxcand[1] ] ) then result.structure:= atlasinfo[3].structureMaxes[ maxcand[1] ]; fi; return result; fi; fi; fi; # We do not know how to deal with this case. return rec( isPrimitive:= fail ); end; ############################################################################# ## #F AGR.Test.Primitivity( [<tocid>[, <name>]] ) ## ## <#GAPDoc Label="test:AGR.Test.Primitivity"> ## <Mark><C>AGR.Test.Primitivity( [<A>tocid</A>] )</C></Mark> ## <Item> ## checks the stored primitivity information for the permutation ## representations that are stored in the directory with identifier ## <A>tocid</A>. ## </Item> ## <#/GAPDoc> ## AGR.Test.Primitivity:= function( arg ) local result, name, tocid, tblid, arec, repname, info, maxid, tbl, maxname, res, permrepinfo, stored, str, entry; # Initialize the result. result:= true; if IsEmpty( arg ) then return AGR.Test.Primitivity( "local" ); elif Length( arg ) = 1 then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.Primitivity( arg[1], name[1] ) and result; od; return result; elif Length( arg ) = 2 then tocid:= arg[1]; name:= arg[2]; fi; tblid:= fail; if TestPackageAvailability( "CTblLib", "1.0" ) = true then tblid:= LibInfoCharacterTable( name ); if tblid <> fail then tblid:= tblid.firstName; fi; fi; for arec in AllAtlasGeneratingSetInfos( name, "contents", tocid, IsPermGroup, true ) do repname:= arec.identifier[2][1]; repname:= repname{ [ 1 .. Position( repname, '.' )-1 ] }; info:= AGR.PrimitivityInfo( arec ); if IsBound( info.transitivity ) and info.transitivity = 0 then res:= [ repname, [ 0, info.orbitLengths ] ]; elif info.isPrimitive = true then if IsBound( info.structure ) then res:= [ repname, [ info.transitivity, info.rankAction, "prim", info.structure, info.class ] ]; elif IsBound( info.class ) then if tblid <> fail then maxid:= Concatenation( tblid, "M", String( info.class ) ); tbl:= CharacterTable( maxid ); else tbl:= fail; fi; if tbl <> fail then maxname:= AGR.StructureDescriptionCharacterTableName( Identifier( tbl ) ); else maxname:= "???"; fi; res:= [ repname, [ info.transitivity, info.rankAction, "prim", maxname, info.class ] ]; else res:= [ repname, [ info.transitivity, info.rankAction, "prim", "???", info.possclass ] ]; fi; elif info.isPrimitive = false then if IsBound( info.overgroup ) then if IsBound( info.subgroup ) then res:= [ repname, [ info.transitivity, info.rankAction, "imprim", Concatenation( info.subgroup, " < ", info.overgroup ) ] ]; else res:= [ repname, [ info.transitivity, info.rankAction, "imprim", Concatenation( "??? < ", info.overgroup ) ] ]; fi; else res:= [ repname, [ info.transitivity, info.rankAction, "imprim", "???" ] ]; fi; else res:= fail; fi; # Compare the computed info with the stored one. permrepinfo:= AtlasOfGroupRepresentationsInfo.permrepinfo; if IsBound( permrepinfo.( repname ) ) then stored:= permrepinfo.( repname ); if stored.transitivity = 0 then str:= [ stored.transitivity, stored.orbits ]; else str:= [ stored.transitivity, stored.rankAction,, stored.stabilizer ]; if stored.isPrimitive then str[3]:= "prim"; str[5]:= stored.maxnr; if '<' in stored.stabilizer then Print( "#E prim. repres. with '<' in stabilizer string ", "for ", repname, "?\n" ); result:= false; fi; else str[3]:= "imprim"; if stored.stabilizer <> "???" and not '<' in stored.stabilizer then Print( "#E imprim. repres. without '<' in stabilizer string ", "for ", repname, "?\n" ); result:= false; fi; fi; fi; else stored:= fail; fi; if stored = fail then if res <> fail then Print( "#I new AGR.API value:\n" ); if "???" in res[2] then Print( "# " ); fi; str:= []; for entry in res[2] do if IsString( entry ) then Add( str, Concatenation( "\"", entry, "\"" ) ); else Add( str, String( entry ) ); fi; od; Print( "AGR.API(\"", res[1], "\",[", JoinStringsWithSeparator( str, "," ), "]);\n" ); fi; elif res = fail then Print( "#I cannot verify stored value `", str, "' for ", repname, "\n" ); elif res[2] <> str then # We have a computed and a stored value. # Report an error if the two values are not compatible, # report a difference if some part was not identified. if Length( str ) <> Length( res[2] ) or Length( str ) = 2 or str{ [ 1 .. 3 ] } <> res[2]{ [ 1 .. 3 ] } then Print( "#E difference stored <-> computed for ", repname, ":\n#E ", str, " <-> ", res[2], "\n" ); result:= false; elif 4 <= Length( str ) and res[2][4] = "???" then Print( "#I cannot identify stabilizer `", str[4], "' for ", repname, "\n" ); elif 4 <= Length( str ) and 6 < Length( res[2][4] ) and res[2][4]{ [ 1 .. 6 ] } = "??? < " then if '<' in str[4] and str[4]{ [ Position( str[4], '<' ) .. Length( str[4] ) ] } = res[2][4]{ [ Position( res[2][4], '<' ) .. Length( res[2][4] ) ] } then Print( "#I cannot identify subgroup in stabilizer `", str[4], "' for ", repname, "\n" ); else Print( "#E difference stored <-> computed for ", repname, ":\n#E ", str, " <-> ", res[2], "\n" ); result:= false; fi; else Print( "#E difference stored <-> computed for ", repname, ":\n#E ", str, " <-> ", res[2], "\n" ); result:= false; fi; fi; od; return result; end; ############################################################################# ## #F AGR.Test.MinimalDegrees( [<verbose>] ) ## ## <#GAPDoc Label="test:AGR.Test.MinimalDegrees"> ## <Mark><C>AGR.Test.MinimalDegrees()</C></Mark> ## <Item> ## checks that the (permutation and matrix) representations available in ## the &ATLAS; of Group Representations do not have smaller degree than ## the claimed minimum. ## </Item> ## <#/GAPDoc> ## AGR.Test.MinimalDegrees:= function( arg ) local result, verbose, info, grpname, known, knownzero, deg, mindeg, knownfinite, chars_and_sizes, size, p, knowncharp, q, knownsizeq; result:= true; verbose:= ( Length( arg ) <> 0 ); for info in AtlasOfGroupRepresentationsInfo.GAPnames do grpname:= info[1]; # Check permutation representations. known:= AllAtlasGeneratingSetInfos( grpname, IsPermGroup, true ); if not IsEmpty( known ) then deg:= Minimum( List( known, r -> r.p ) ); mindeg:= MinimalRepresentationInfo( grpname, NrMovedPoints, "lookup" ); if mindeg = fail then if verbose then Print( "#I `", grpname, "': degree ", deg, " perm. repr. known but no minimality info stored\n" ); fi; elif deg < mindeg.value then Print( "#E `", grpname, "': smaller perm. repr. (", deg, ") than minimal degree (", mindeg.value, ")\n" ); result:= false; fi; fi; # Check matrix representations over fields in characteristic zero. known:= AllAtlasGeneratingSetInfos( grpname, Ring, IsField ); knownzero:= Filtered( known, r -> IsBound( r.ring ) and not IsFinite( r.ring ) ); if not IsEmpty( knownzero ) then deg:= Minimum( List( knownzero, r -> r.dim ) ); mindeg:= MinimalRepresentationInfo( grpname, Characteristic, 0, "lookup" ); if mindeg = fail then if verbose then Print( "#I `", grpname, "': degree ", deg, " char. 0 ", "matrix repr. known but no minimality info stored\n" ); fi; elif deg < mindeg.value then Print( "#E `", grpname, "': smaller char. 0 matrix repr. (", deg, ") than minimal degree (", mindeg.value, ")\n" ); result:= false; fi; fi; # Check matrix representations over finite fields. knownfinite:= Filtered( known, r -> IsFinite( r.ring ) ); chars_and_sizes:= []; for size in Set( List( knownfinite, r -> Size( r.ring ) ) ) do p:= SmallestRootInt( size ); info:= First( chars_and_sizes, pair -> pair[1] = p ); if info = fail then Add( chars_and_sizes, [ p, [ size ] ] ); else Add( info[2], size ); fi; od; for info in chars_and_sizes do p:= info[1]; knowncharp:= Filtered( knownfinite, r -> Characteristic( r.ring ) = p ); deg:= Minimum( List( knowncharp, r -> r.dim ) ); mindeg:= MinimalRepresentationInfo( grpname, Characteristic, p, "lookup" ); if mindeg = fail then if verbose then Print( "#I `", grpname, "': degree ", deg, " char. ", p, " matrix repr. known but no minimality info stored\n" ); fi; elif deg < mindeg.value then Print( "#E `", grpname, "': smaller char. ", p, " matrix repr. (", deg, ") than minimal degree (", mindeg.value, ")\n" ); result:= false; fi; for q in info[2] do knownsizeq:= Filtered( knownfinite, r -> Size( r.ring ) = q ); deg:= Minimum( List( knownsizeq, r -> r.dim ) ); mindeg:= MinimalRepresentationInfo( grpname, Size, q, "lookup" ); if mindeg = fail then if verbose then Print( "#I `", grpname, "': degree ", deg, " size ", q, " matrix repr. known but no minimality info stored\n" ); fi; elif deg < mindeg.value then Print( "#E `", grpname, "': smaller size ", q, " matrix repr. (", deg, ") than minimal degree (", mindeg.value, ")\n" ); result:= false; fi; od; od; od; return result; end; if not IsPackageMarkedForLoading( "TomLib", "" ) then Unbind( HasStandardGeneratorsInfo ); Unbind( IsStandardGeneratorsOfGroup ); Unbind( LIBTOMKNOWN ); Unbind( StandardGeneratorsInfo ); fi; if not IsPackageMarkedForLoading( "CTblLib", "" ) then Unbind( ConstructionInfoCharacterTable ); Unbind( HasConstructionInfoCharacterTable ); Unbind( LibInfoCharacterTable ); fi; ############################################################################# ## #E