CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
#W  automaton.gd              automgrp package                 Yevgen Muntyan
#W                                                             Dmytro Savchuk
##  automgrp v 1.3
##
#Y  Copyright (C) 2003 - 2016 Yevgen Muntyan, Dmytro Savchuk
##


###############################################################################
##
#C  IsMealyAutomaton ( <A> )
##
##  A category of non-initial finite Mealy automata with the same input and
##  output alphabet.
##
DeclareCategory("IsMealyAutomaton", IsMultiplicativeElement and
                               IsAssociativeElement);
DeclareCategoryFamily("IsMealyAutomaton");
DeclareCategoryCollections("IsMealyAutomaton");


###############################################################################
##
#O  MealyAutomaton( <table>[, <names>[, <alphabet>]] )
#O  MealyAutomaton( <string> )
#O  MealyAutomaton( <autom> )
#O  MealyAutomaton( <tree_hom_list> )
#O  MealyAutomaton( <list>, <name_func> )
#O  MealyAutomaton( <list>, <true> )
##
##  Creates the Mealy automaton (see "Short math background") defined by the argument <table>, <string>
##  or <autom>. Format of the argument <table> is
##  the following: it is a list of states, where each state is a list of
##  positive integers which represent transition function at the given state and a
##  permutation or transformation which represent the output function at this
##  state.  Format of the string <string> is the same as in `AutomatonGroup' (see~"AutomatonGroup").
##  The third form of this operation takes a tree homomorphism <autom> as its argument.
##  It returns noninitial automaton constructed from the sections of <autom>, whose first state
##  corresponds to <autom> itself. The fourth form creates a noninitial automaton constructed
##  of the states of all tree homomorphisms from the <tree_hom_list>.
##
##  \beginexample
##  gap> A := MealyAutomaton([[1,2,(1,2)],[3,1,()],[3,3,(1,2)]], ["a","b","c"]);
##  <automaton>
##  gap> Display(A);
##  a = (a, b)(1,2), b = (c, a), c = (c, c)(1,2)
##  gap> B:=MealyAutomaton([[1,2,Transformation([1,1])],[3,1,()],[3,3,(1,2)]],["a","b","c"]);
##  <automaton>
##  gap> Display(B);
##  a = (a, b)[ 1, 1 ], b = (c, a), c = (c, c)[ 2, 1 ]
##  gap> D := MealyAutomaton("a=(a,b)(1,2), b=(b,a)");
##  <automaton>
##  gap> Display(D);
##  a = (a, b)(1,2), b = (b, a)
##  gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );
##  < u, v >
##  gap> M := MealyAutomaton(u*v*u^-3);
##  <automaton>
##  gap> Display(M);
##  a1 = (a2, a5), a2 = (a3, a4), a3 = (a4, a2)(1,2), a4 = (a4, a4), a5 = (a6, a3)
##  (1,2), a6 = (a7, a4), a7 = (a6, a4)(1,2)
##  \endexample
##
##  If <list> consists of tree homomorphisms, it creates a noninitial automaton
##  constructed of their states. If <name_func> is a function then it is used
##  to name the states of the newly constructed automaton. If it is <true>
##  then states of automata from the <list> are used. If it <false> then new
##  states are named a_1, a_2, etc.
##
##  \beginexample
##  gap> G := AutomatonGroup("a=(b,a),b=(b,a)(1,2)");
##  < a, b >
##  gap> MealyAutomaton([a*b]);; Display(last);
##  a1 = (a2, a4)(1,2), a2 = (a3, a1), a3 = (a3, a1)(1,2), a4 = (a2, a4)
##  gap> MealyAutomaton([a*b], true);; Display(last);
##  <a*b> = (<b^2>, <a^2>)(1,2), <b^2> = (<b*a>, <a*b>), <b*a> = (<b*a>, <a*b>)(1,2), <a^2> = (<b^2>, <a^2>)
##  gap> MealyAutomaton([a*b], String);; Display(last);
##  a*b = (b^2, a^2)(1,2), b^2 = (b*a, a*b), b*a = (b*a, a*b)(1,2), a^2 = (b^2, a^2)
##  \endexample

DeclareOperation("MealyAutomaton", [IsList]);
DeclareOperation("MealyAutomaton", [IsList, IsObject]);
DeclareOperation("MealyAutomaton", [IsList, IsList, IsList]);
DeclareOperation("MealyAutomaton", [IsTreeHomomorphism]);


DeclareOperation("SetStateName", [IsMealyAutomaton, IsInt, IsString]);
DeclareOperation("SetStateNames", [IsMealyAutomaton, IsList]);


# ###############################################################################
# ##
# #A  TransitionFunction( <A> )
# ##
# ##  Returns transition function of <A> as a {\GAP} function of two
# ##  variables.
# ##
# DeclareAttribute("TransitionFunction", IsMealyAutomaton);
#
# ###############################################################################
# ##
# #A  OutputFunction( <A>[, <state>] )
# ##
# ##  Returns output function of <A> as a {\GAP} function of two
# ##  variables.
# ##
# DeclareAttribute("OutputFunction", IsMealyAutomaton);


###############################################################################
##
#A  AutomatonList( <A> )
##
##  Returns the list of <A> acceptable by `MealyAutomaton' (see "MealyAutomaton")
##
##
DeclareAttribute("AutomatonList", IsMealyAutomaton);


###############################################################################
##
#A  NumberOfStates( <A> )
##
##  Returns the number of states of the automaton <A>.
##
##
DeclareAttribute("NumberOfStates", IsMealyAutomaton);


###############################################################################
##
#A  SizeOfAlphabet( <A> )
##
##  Returns the number of letters in the alphabet the automaton <A> acts on.
##
##
DeclareAttribute("SizeOfAlphabet", IsMealyAutomaton);



################################################################################
##
#A  AG_MinimizedAutomatonList ( <A> )
##
##  Returns a minimized automaton, which contains the states of <A>, their inverses
##  and the trivial state
##
DeclareAttribute( "AG_MinimizedAutomatonList", IsMealyAutomaton, "mutable" );


################################################################################
##
#F  MinimizationOfAutomaton ( <A> )
##
##  Returns the automaton obtained from automaton <A> by minimization. The
##  implementation of this function was significantly optimized by Andrey Russev
##  starting from Version 1.3.
##  \beginexample
##  gap> B := MealyAutomaton("a=(1,a)(1,2), b=(1,a)(1,2), c=(a,b), d=(a,b)");
##  <automaton>
##  gap> C := MinimizationOfAutomaton(B);
##  <automaton>
##  gap> Display(C);
##  a = (1, a)(1,2), c = (a, a), 1 = (1, 1)
##  \endexample
##
DeclareGlobalFunction("MinimizationOfAutomaton");


################################################################################
##
#F  MinimizationOfAutomatonTrack ( <A> )
##
##  Returns the list `[A_new, new_via_old, old_via_new]', where `A_new' is an
##  automaton obtained from automaton <A> by minimization,
##  `new_via_old' describes how new states are expressed in terms of the old ones, and
##  `old_via_new' describes how old states are expressed in terms of the new ones.
##  The implementation of this function was significantly optimized by Andrey Russev
##  starting from Version 1.3.
##  \beginexample
##  gap> B := MealyAutomaton("a=(1,a)(1,2), b=(1,a)(1,2), c=(a,b), d=(a,b)");
##  <automaton>
##  gap> B_min := MinimizationOfAutomatonTrack(B);
##  [ <automaton>, [ 1, 3, 5 ], [ 1, 1, 2, 2, 3 ] ]
##  gap> Display(B_min[1]);
##  a = (1, a)(1,2), c = (a, a), 1 = (1, 1)
##  \endexample
##
DeclareGlobalFunction("MinimizationOfAutomatonTrack");


#############################################################################
##
#P  IsInvertible ( <A> )
##
##  Is `true' if <A> is invertible and `false' otherwise.
##
DeclareProperty("IsInvertible", IsMealyAutomaton);


################################################################################
##
#P  IsOfPolynomialGrowth ( <A> )
##
##  Determines whether the automaton <A> has polynomial growth in terms of Sidki~\cite{Sid00}.
##
##  See also `IsBounded' ("IsBounded") and
##  `PolynomialDegreeOfGrowth' ("PolynomialDegreeOfGrowth").
##  \beginexample
##  gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");
##  <automaton>
##  gap> IsOfPolynomialGrowth(B);
##  true
##  gap> D := MealyAutomaton("a=(a,b)(1,2), b=(b,a)");
##  <automaton>
##  gap> IsOfPolynomialGrowth(D);
##  false
##  \endexample
##
DeclareProperty("IsOfPolynomialGrowth", IsMealyAutomaton);


################################################################################
##
#P  IsBounded ( <A> )
##
##  Determines whether the automaton <A> is bounded in terms of Sidki~\cite{Sid00}.
##
##  See also `IsOfPolynomialGrowth' ("IsOfPolynomialGrowth")
##  and `PolynomialDegreeOfGrowth' ("PolynomialDegreeOfGrowth").
##  \beginexample
##  gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");
##  <automaton>
##  gap> IsBounded(B);
##  true
##  gap> C := MealyAutomaton("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");
##  <automaton>
##  gap> IsBounded(C);
##  false
##  \endexample
##
DeclareProperty("IsBounded", IsMealyAutomaton);


################################################################################
##
#A  PolynomialDegreeOfGrowth ( <A> )
##
##  For an automaton <A> of polynomial growth in terms of Sidki~\cite{Sid00}
##  determines its degree of
##  polynomial growth. This degree is 0 if and only if automaton is bounded.
##  If the growth of automaton is exponential returns `fail'.
##
##  See also `IsOfPolynomialGrowth' ("IsOfPolynomialGrowth")
##  and `IsBounded' ("IsBounded").
##  \beginexample
##  gap> B := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");
##  <automaton>
##  gap> PolynomialDegreeOfGrowth(B);
##  0
##  gap> C := MealyAutomaton("a=(a,b)(1,2), b=(b,c), c=(c,1)(1,2)");
##  <automaton>
##  gap> PolynomialDegreeOfGrowth(C);
##  2
##  \endexample
##
DeclareAttribute("PolynomialDegreeOfGrowth", IsMealyAutomaton);


################################################################################
##
#O  DualAutomaton ( <A> )
##
##  Returns the automaton dual of <A>.
##  \beginexample
##  gap> A := MealyAutomaton("a=(b,a)(1,2), b=(b,a)");
##  <automaton>
##  gap> D := DualAutomaton(A);
##  <automaton>
##  gap> Display(D);
##  d1 = (d2, d1)[ 2, 2 ], d2 = (d1, d2)[ 1, 1 ]
##  \endexample
##
DeclareOperation("DualAutomaton", [IsMealyAutomaton]);


################################################################################
##
#O  InverseAutomaton ( <A> )
##
##  Returns the automaton inverse to <A> if <A> is invertible.
##  \beginexample
##  gap> A := MealyAutomaton("a=(b,a)(1,2), b=(b,a)");
##  <automaton>
##  gap> B := InverseAutomaton(A);
##  <automaton>
##  gap> Display(B);
##  a1 = (a1, a2)(1,2), a2 = (a2, a1)
##  \endexample
##
DeclareOperation("InverseAutomaton", [IsMealyAutomaton]);


################################################################################
##
#P  IsBireversible ( <A> )
##
##  Computes whether or not the automaton <A> is bireversible, i.e. <A>, the dual of <A> and
##  the dual of the inverse of <A> are invertible. The example below shows that the
##  Bellaterra automaton is bireversible.
##  \beginexample
##  gap> Bellaterra := MealyAutomaton("a=(c,c)(1,2), b=(a,b), c=(b,a)");
##  <automaton>
##  gap> IsBireversible(Bellaterra);
##  true
##  \endexample
##
DeclareProperty("IsBireversible", IsMealyAutomaton);


################################################################################
##
#P  IsReversible ( <A> )
##
##  Computes whether or not the automaton <A> is reversible, i.e. the dual of <A>
##  is invertible.
##
DeclareProperty("IsReversible", IsMealyAutomaton);


################################################################################
##
#P  IsIRAutomaton ( <A> )
##
##  Computes whether or not the automaton <A> is an IR-automaton, i.e. <A> and its dual are invertible.
##  The example below shows that the automaton generating lamplighter group is an IR-automaton.
##  \beginexample
##  gap> L := MealyAutomaton("a=(b,a)(1,2), b=(a,b)");
##  <automaton>
##  gap> IsIRAutomaton(L);
##  true
##  \endexample

DeclareProperty("IsIRAutomaton", IsMealyAutomaton);



################################################################################
##
#P  IsTrivial ( <A> )
##
##  Computes whether the automaton <A> is equivalent to the trivial automaton.
##  \beginexample
##  gap> A := MealyAutomaton("a=(c,c), b=(a,b), c=(b,a)");
##  <automaton>
##  gap> IsTrivial(A);
##  true
##  \endexample
##
DeclareProperty("IsTrivial", IsMealyAutomaton);


################################################################################
##
#O  MDReduction ( <A> )
##
##  Performs the process of MD-reduction of automaton <A> (alternating
##  applications of minimization and dualization procedures) until a pair of
##  minimal automata dual to each other is reached. Returns this pair. The main
##  point of this procedure is in the fact that the (semi)group generated by the
##  original automaton is finite if and only each of the (semi)groups generated
##  by the output automata is finite.
##  \beginexample
##  gap> A:=MealyAutomaton("a=(d,d,d,d)(1,2)(3,4),b=(b,b,b,b)(1,4)(2,3),\\
##  >                       c=(a,c,a,c),          d=(c,a,c,a)");
##  <automaton>
##  gap> NumberOfStates(MinimizationOfAutomaton(A));
##  4
##  gap> MDR:=MDReduction(A);
##  [ <automaton>, <automaton> ]
##  gap> Display(MDR[1]);
##  d1 = (d2, d2, d1, d1)(1,4,3), d2 = (d1, d1, d2, d2)(1,4)
##  gap> Display(MDR[2]);
##  d1 = (d4, d4)(1,2), d2 = (d2, d2)(1,2), d3 = (d1, d3), d4 = (d3, d1)
##  \endexample
DeclareOperation("MDReduction", [IsMealyAutomaton]);


################################################################################
##
#P  IsMDTrivial ( <A> )
##
##  Returns `true' if <A> is MD-trivial (i.e. if MD-reduction proedure returns the
##  trivial automaton) and `false' otherwise.
DeclareProperty("IsMDTrivial", IsMealyAutomaton);


################################################################################
##
#P  IsMDReduced ( <A> )
##
##  Returns `true' if <A> is MD-reduced and `false' otherwise.
DeclareProperty("IsMDReduced", IsMealyAutomaton);


################################################################################
##
#O  DisjointUnion ( <A>, <B> )
##
##  Constructs the disjoint union of automata <A> and <B>
##  \beginexample
##  gap> A := MealyAutomaton("a=(a,b)(1,2), b=(a,b)");
##  <automaton>
##  gap> B := MealyAutomaton("c=(d,c), d=(c,e)(1,2), e=(e,d)");
##  <automaton>
##  gap> Display(DisjointUnion(A, B));
##  a1 = (a1, a2)(1,2), a2 = (a1, a2), a3 = (a4, a3), a4 = (a3, a5)
##  (1,2), a5 = (a5, a4)
##  \endexample
##
DeclareOperation("DisjointUnion", [IsMealyAutomaton, IsMealyAutomaton]);



################################################################################
##
#O  AreEquivalentAutomata( <A>, <B> )
##
##  Returns `true' if for every state `s' of the automaton <A> there is a state of the automaton <B>
##  equivalent to `s' and vice versa.
##  \beginexample
##  gap> A := MealyAutomaton("a=(b,a)(1,2), b=(a,c), c=(b,c)(1,2)");
##  <automaton>
##  gap> B := MealyAutomaton("b=(a,c), c=(b,c)(1,2), a=(b,a)(1,2), d=(b,c)(1,2)");
##  <automaton>
##  gap> AreEquivalentAutomata(A, B);
##  true
##  \endexample
##
DeclareOperation("AreEquivalentAutomata", [IsMealyAutomaton, IsMealyAutomaton]);



################################################################################
##
#O  SubautomatonWithStates( <A>, <states> )
##
##  Returns the minimal subautomaton of the automaton <A> containing states <states>.
##  \beginexample
##  gap> A := MealyAutomaton("a=(e,d)(1,2),b=(c,c),c=(b,c)(1,2),d=(a,e)(1,2),e=(e,d)");
##  <automaton>
##  gap> Display(SubautomatonWithStates(A, [1, 4]));
##  a = (e, d)(1,2), d = (a, e)(1,2), e = (e, d)
##  \endexample
##
DeclareOperation("SubautomatonWithStates", [IsMealyAutomaton, IsList]);




################################################################################
##
#O  AutomatonNucleus( <A> )
##
##  Returns the nucleus of the automaton <A>, i.e. the minimal subautomaton
##  containing all cycles in <A>.
##  \beginexample
##  gap> A := MealyAutomaton("a=(b,c)(1,2),b=(d,d),c=(d,b)(1,2),d=(d,b)(1,2),e=(a,d)");
##  <automaton>
##  gap> Display(AutomatonNucleus(A));
##  b = (d, d), d = (d, b)(1,2)
##  \endexample
##
DeclareOperation("AutomatonNucleus", [IsMealyAutomaton]);


###############################################################################
##
#A  AdjacencyMatrix( <A> )
##
##  Returns the adjacency matrix of a Mealy automaton <A>, in which the $ij$-th entry
##  contains the number of arrows in the Moore diagram of <A> from state $i$ to state $j$.
##
##  \beginexample
##  gap> A:=MealyAutomaton("a=(a,a,b)(1,2,3),b=(a,c,b)(1,2),c=(a,a,a)");
##  <automaton>
##  gap> AdjacencyMatrix(A);
##  [ [ 2, 1, 0 ], [ 1, 1, 1 ], [ 3, 0, 0 ] ]
##  \endexample
##
DeclareAttribute("AdjacencyMatrix", IsMealyAutomaton);


################################################################################
##
#P  IsAcyclic ( <A> )
##
##  Computes whether or not an automaton <A> is acyclic in the sense of Sidki~\cite{Sid00}.
##  I.e. returns `true' if the Moore diagram of <A> does not contain cycles with two or more
##  states and `false' otherwise.
##  \beginexample
##  gap> A := MealyAutomaton("a=(a,a,b)(1,2,3),b=(c,c,b)(1,2),c=(d,c,1),d=(d,1,d)");
##  <automaton>
##  gap> IsAcyclic(A);
##  true
##  gap> A := MealyAutomaton("a=(a,a,b)(1,2,3),b=(c,c,d)(1,2),c=(d,c,1),d=(b,1,d)");
##  <automaton>
##  gap> IsAcyclic(A);
##  false
##  \endexample
##
DeclareProperty("IsAcyclic", IsMealyAutomaton);

##  PassToPowerOfAlphabet ( <A>, <power> )


#E