CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
#W  automgroup.gd             automgrp package                 Yevgen Muntyan
#W                                                             Dmytro Savchuk
##  automgrp v 1.3
##
#Y  Copyright (C) 2003 - 2016 Yevgen Muntyan, Dmytro Savchuk
##


#############################################################################
##
#C  IsAutomGroup( <G> )
##
##  The category of groups generated by finite invertible initial automata
##  (elements from category `IsAutom').
##
DeclareSynonym("IsAutomGroup", IsAutomCollection and IsGroup);
InstallTrueMethod(IsTreeAutomorphismCollection, IsAutomGroup);
InstallTrueMethod(IsInvertibleAutomCollection, IsAutomGroup);


#############################################################################
##
#O  AutomatonGroup( <string>[, <bind_vars>] )
#O  AutomatonGroup( <list>[, <names>, <bind_vars>] )
#O  AutomatonGroup( <automaton>[, <bind_vars>] )
##
##  Creates the self-similar group generated by the finite automaton, described by <string>
##  or <list>, or by the argument <automaton>.
##
##  The argument <string> is a conventional notation of the form
##  `name1=(name11,name12,...,name1d)perm1, name2=...'
##  where each `name\*' is a name of a state or `1', and each `perm\*' is a
##  permutation written in {\GAP} notation. Trivial permutations may be
##  omitted. This function ignores whitespace, and states may be separated
##  by commas or semicolons.
##
##  The argument <list> is a list consisting of $n$ entries corresponding to $n$ states of an automaton.
##  Each entry is of the form $[a_1,\.\.\.,a_d,p]$,
##  where $d \geq 2$ is the size of the alphabet the group acts on, $a_i$ are `IsInt' in
##  $\{1,\ldots,n\}$ and
##  represent the sections of the corresponding state at all vertices of the first level of the tree;
##  and $p$ from `SymmetricGroup(<d>)' describes the action of the corresponding state on the
##  alphabet.
##
##  The optional argument <names> must be a list of names of generators of the group, corresponding to the
##  states of the automaton.
##  These names are used to display elements of the resulting group.
##
##  If the optional argument <bind_vars> is `false' the names of generators of the group are not assigned
##  to the global variables. The default value is `true'. One can use
##  `AssignGeneratorVariables' function to assign these names later, if they were not assigned
##  when the group was created.
##
##  \beginexample
##  gap> AutomatonGroup("a=(a,b), b=(a, b)(1,2)");
##  < a, b >
##  gap> AutomatonGroup("a=(b,a,1)(2,3), b=(1,a,b)(1,2,3)");
##  < a, b >
##  gap> A := MealyAutomaton("a=(b,1)(1,2), b=(a,1)");
##  <automaton>
##  gap> G := AutomatonGroup(A);
##  < a, b >
##  \endexample
##
##  In the second form of this operation the definition of the first group
##  looks like
##  \beginexample
##  gap> AutomatonGroup([ [ 1, 2, ()], [ 1, 2, (1,2) ] ], [ "a", "b" ]);
##  < a, b >
##  \endexample
##
DeclareOperation("AutomatonGroup", [IsList]);
DeclareOperation("AutomatonGroup", [IsMealyAutomaton]);
DeclareOperation("AutomatonGroup", [IsList, IsList]);
DeclareOperation("AutomatonGroup", [IsList, IsBool]);
DeclareOperation("AutomatonGroup", [IsMealyAutomaton, IsBool]);
DeclareOperation("AutomatonGroup", [IsList, IsList, IsBool]);


#############################################################################
##
#P  IsGroupOfAutomFamily( <G> )
##
##  Whether group <G> is the whole group generated by the automaton used to
##  construct elements of <G>.
##
DeclareProperty("IsGroupOfAutomFamily", IsAutomGroup);
InstallTrueMethod(IsSelfSimilar, IsGroupOfAutomFamily);



#############################################################################
##
#A  UnderlyingFreeSubgroup( <G> )
##
DeclareAttribute("UnderlyingFreeSubgroup", IsAutomGroup, "mutable");


#############################################################################
##
#P  IsAutomatonGroup( <G> )
##
##  is `true' if <G> is created using the command `AutomatonGroup' ("AutomatonGroup")
##  or if the generators of <G> coincide with the generators of the corresponding family, and `false' otherwise.
##  To test whether <G> is self-similar use `IsSelfSimilar' ("IsSelfSimilar") command.
##
DeclareProperty("IsAutomatonGroup", IsAutomGroup);
InstallTrueMethod(IsGroupOfAutomFamily, IsAutomatonGroup);


#############################################################################
##
#A  MihailovaSystem( <G> )
##
##  In the case when <G> is an automaton fractal group acting on a binary
##  tree, computes the generating set for the first level stabilizer in G
##  such that the sections of these generators at the first level,
##  viewed as elements of $F_r\times F_r$, are in Mihailova normal form.
##  See~\cite{GSESS} for details.
##
##  \beginexample
##  gap> G := AutomatonGroup("a=(b,c)(1,2),b=(a,c),c=(a,a)");
##  < a, b, c >
##  gap> M := MihailovaSystem(G);
##  [ c^-1*b, c^-1*b^-1*c*a^-1*b*c*b^-1*a, a^-1*b*c*b^-1*a, a*c^-1*b^-1*a*c,
##    c^-1*a^-1*b*c*a ]
##  gap> for g in M do
##  >      Print(g,"=",Decompose(g),"\n");
##  >    od;
##  c^-1*b=(1, a^-1*c)
##  c^-1*b^-1*c*a^-1*b*c*b^-1*a=(1, a^-1*c^-1*a*b^-1*a*b)
##  a^-1*b*c*b^-1*a=(a, b^-1*a*b)
##  a*c^-1*b^-1*a*c=(b, c*a^-2*b*a)
##  c^-1*a^-1*b*c*a=(c, a^-1*b^-1*a^2*b)
##  \endexample
##
DeclareAttribute("MihailovaSystem", IsAutomatonGroup, "mutable");


#############################################################################
##
#A  GroupOfAutomFamily(<G>)
##

DeclareAttribute("GroupOfAutomFamily", IsAutomGroup);

#E