Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W listops.gd automgrp package Yevgen Muntyan #W Dmytro Savchuk ## automgrp v 1.3 ## #Y Copyright (C) 2003 - 2016 Yevgen Muntyan, Dmytro Savchuk ## ## No function here checks correctness of arguments ############################################################################### ## ## AG_IsCorrectAutomatonList( <list>, <invertible> ) ## ## Checks whether the list is correct list to define automaton, i.e.: ## $[[a_11,...,a_1n,p_1],[a_21,...,a_2n,p_2],...,[a_m1...a_mn,p_m]]$, ## where $n >= 2$, $m >= 1$, $a_ij$ are IsInt in $[1..m]$; and all $p_i$ are ## in `SymmetricGroup'($n$) (semigroup of transformations of the set $\{1..n\}$) ## if <invertible>=`true' (`false'). ## DeclareGlobalFunction("AG_IsCorrectAutomatonList"); ############################################################################### ## ## AG_IsCorrectRecurList( <list>, <invertible> ) ## ## Checks whether the list is correct list to define a self-similar group, i.e.: ## $[[a_11,...,a_1n,p_1],[a_21,...,a_2n,p_2],...,[a_m1...a_mn,p_m]]$, ## where $n >= 2$, $m >= 1$, $a_ij$ are `IsInt' in $[1..m]\cup [-m..-1]$ or `IsList' with ## entries from $[1..m]\cup [-m..-1]$; and all $p_i$ are ## in `SymmetricGroup'($n$) (semigroup of transformations of the set $\{1..n\}$) ## if <invertible>=`true' (`false'). ## DeclareGlobalFunction("AG_IsCorrectRecurList"); ############################################################################### ## ## AG_InverseAutomatonList(<list>) ## DeclareGlobalFunction("AG_InverseAutomatonList"); ############################################################################### ## ## AG_ConnectedStatesInList( <state>, <list>) ## ## Returns list of states which can be reached from given state. ## DeclareGlobalFunction("AG_ConnectedStatesInList"); ############################################################################### ## ## AG_IsTrivialStateInList( <state>, <list>) ## ## Checks whether given state is trivial. ## DeclareGlobalFunction("AG_IsTrivialStateInList"); ############################################################################### ## ## AG_IsObviouslyTrivialStateInList( <state>, <list>) ## ## Checks whether given state is obviously trivial. ## Works for lists generating self-similar groups. ## Returns `true' if <state>=(*,...,*)(), where ## * could be either +-<state> or [+-<state>]. ## DeclareGlobalFunction("AG_IsObviouslyTrivialStateInList"); ############################################################################### ## ## AG_IsInvertibleStateInList( <state>, <list>) ## ## Checks whether given state is invertible. ## DeclareGlobalFunction("AG_IsInvertibleStateInList"); ############################################################################### ## ## AG_AreEquivalentStatesInList( <state1>, <state2>, <list> ) ## ## Checks whether two given states are equivalent. ## DeclareGlobalFunction("AG_AreEquivalentStatesInList"); ############################################################################### ## ## AG_AreEquivalentStatesInLists( <state1>, <state2>, <list1>, <list2>) ## ## Checks whether two given states in different lists are equivalent. ## DeclareGlobalFunction("AG_AreEquivalentStatesInLists"); ############################################################################### ## ## AG_ReducedAutomatonInList( <list> ) ## ## Returns [new_list, list_of_states] where new_list is a new list which ## represents reduced form of given automaton, i-th elmt of list_of_states ## is the number of i-th state of new automaton in the old one. ## ## First state of returned list is always first state of given one. ## It does not remove trivial state, so it's not really ``reduced automaton'', ## it just removes equivalent states. ## TODO: write such function which removes trivial state ## DeclareGlobalFunction("AG_ReducedAutomatonInList"); ############################################################################### ## ## AG_MinimalSubAutomatonInlist(<states>, <list>) ## ## Returns list representation of automaton given by <list> which is minimal ## subatomaton of automaton containing states <states>. ## DeclareGlobalFunction("AG_MinimalSubAutomatonInlist"); ############################################################################### ## ## AG_PermuteStatesInList(<list>, <perm>) ## ## I guess it means that i-th state goes to (i^perm)-th place. ## DeclareGlobalFunction("AG_PermuteStatesInList"); ############################################################################### ## ## AG_ImageOfVertexInList(<list>, <init>, <vertex>) ## DeclareGlobalFunction("AG_ImageOfVertexInList"); ############################################################################### ## ## AG_WordStateInList(<word>, <s>, <list>, <reduce>, <trivstate>) ## AG_WordStateAndPermInList(<word>, <s>, <list>) ## ## It's ProjectWord from selfs.g ## DeclareGlobalFunction("AG_WordStateInList"); DeclareGlobalFunction("AG_WordStateAndPermInList"); ############################################################################### ## ## AG_DiagonalPowerInList(<list>, <n>) ## DeclareGlobalFunction("AG_DiagonalPowerInList"); ############################################################################### ## ## AG_MultAlphabetInList(<list>, <n>) ## DeclareGlobalFunction("AG_MultAlphabetInList"); ############################################################################### ## ## AG_HasDualInList(<list>) ## AG_HasDualOfInverseInList(<list>) ## AG_DualAutomatonList(<list>) ## DeclareGlobalFunction("AG_HasDualInList"); DeclareGlobalFunction("AG_HasDualOfInverseInList"); DeclareGlobalFunction("AG_DualAutomatonList"); #E