Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################### ## ## Splits an automaton string into a list of strings each containing a state ## of the automaton, e.g. ## "a = (a, 1)(1,2), b=(a,a)" -> ["a = (a, 1)(1,2)", "b=(a,a)"] ## __AG_split_states := function(str) local states, s, c, i, parens; states := []; parens := []; s := ""; for i in [1..Length(str)] do c := str[i]; if c = '(' or c = '[' then if c = '(' then Add(parens, ')'); else Add(parens, ']'); fi; Add(s, c); elif c = ')' or c = ']' then if IsEmpty(parens) or parens[Length(parens)] <> c then Error("Unmatched parenthesis: ", str{[i..Length(str)]}); fi; Remove(parens, Length(parens)); Add(s, c); elif (c = ',' or c = ';') and IsEmpty(parens) then NormalizeWhitespace(s); Add(states, s); s := ""; else Add(s, c); fi; od; Add(states, s); return states; end; ############################################################################### ## ## Splits a state string: ## "(a,b,c)(1,2)" -> [[[ "a", "b", "c" ], true], [["1", "2"],true]] ## It actually has no idea about permutations, it just parses the parentheses ## and brackets. In the elements of the resulting list boolean element ## indicates whether it were parentheses or brackets. ## Correctly skips stuff like (a*b)^2 in "((a*b)^2, a, a)". ## __AG_split_perms := function(str) local s, perms, elms, cl, op, paren, bracket, isperm; s := 0; perms := []; while s < Length(str) do paren := Position(str, '(', s); bracket := Position(str, '[', s); if paren <> fail and (bracket = fail or bracket > paren) then isperm := true; op := paren; cl := Position(str, ')', op); elif bracket <> fail then isperm := false; op := bracket; cl := Position(str, ']', op); else Error("Invalid state string '", str, "'"); fi; if cl = fail then Error("Invalid state string '", str, "'"); fi; elms := SplitString(str{[op+1 .. cl-1]}, ",;"); Perform(elms, NormalizeWhitespace); Add(perms, [elms, isperm]); s := cl; od; return perms; end; ############################################################################### ## ## Guesses whether the argument denotes a permutation (or a transformation) or ## it's a state list: ## [1,2,3] -> true ## ["a",1,1] -> false ## __AG_is_permutation := function(list) local s, d, one; one := true; for s in list do d := Int(s); if d = fail or d < 0 then return false; elif d > 1 then one := false; fi; od; return not one; end; ############################################################################### ## ## Parses a word: ## "a", [] -> [1], ["a"] ## "a*b", [] -> [1, 2], ["a", "b"] ## "a*b^-1", [] -> [1, -2], ["a", "b"] ## "(a*b)^-1", [] -> [-2, -1], ["a", "b"] ## __AG_parse_word := function(word, names) local parsed_word, paren, paren_start, s, len, i, tok, power, in_power, finish_token; parsed_word := []; paren := 0; paren_start := -1; len := Length(word); tok := fail; power := fail; in_power := false; finish_token := function() local j; if in_power and power = fail then Error("trailing power sign: ", word); fi; if power = fail then power := 1; elif IsString(power) then power := Int(power); if power = fail then Error("invalid power: ", word); fi; fi; if IsString(tok) then if not tok in names then Add(names, tok); tok := [Length(names)]; else tok := [Position(names, tok)]; fi; elif not IsList(tok) then Error("oops"); fi; if power < 0 then power := -power; tok := List(Reversed(tok), elm -> -elm); fi; for j in [1..power] do Append(parsed_word, tok); od; tok := fail; power := fail; in_power := false; end; for i in [1..len] do s := word[i]; if s = '(' then paren := paren + 1; if paren = 1 then paren_start := i; fi; elif s = ')' then paren := paren - 1; if paren = -1 then Error("invalid word: ", word); fi; if paren = 0 then if not in_power then tok := __AG_parse_word(word{[paren_start+1..i-1]}, names); else Error("invalid word, parentheses inside the power: ", word); fi; paren_start := -1; fi; # skip what's inside parentheses elif paren <> 0 then continue; elif s = '*' then finish_token(); elif s = '^' then if in_power then Error("invalid word, power is not associative: ", word); elif tok = fail then Error("power without operand: ", word); fi; in_power := true; elif not in_power then if tok = fail then tok := word{[i..i]}; elif IsString(tok) then Add(tok, s); else Error("invalid word, missing multiplication sign: ", word); fi; else if power = fail then power := word{[i..i]}; elif IsString(power) then Add(power, s); else Error("invalid word, missing multiplication sign: ", word); fi; fi; od; if tok <> fail then finish_token(); fi; return parsed_word; end; ############################################################################### ## ## ["a", "b", "c"] -> [[[1], [2], [3]], ["a", "b", "c"]] ## ["a", "1", "1"] -> [[[1], [], []], ["a"]] ## __AG_make_states := function(list, names, str) local states, s; states := []; for s in list do if s = "1" then Add(states, []); else Add(states, __AG_parse_word(s, names)); fi; od; return states; end; ############################################################################### ## ## Tries to make sense of the permutation in an automaton string: ## [[1,2,3],true] -> (1,2,3) ## [[1,2,3],false] -> [1,2,3] ## [[1,2,2],true] -> fail ## [[1,2,"nonsense"],true] -> fail ## __AG_make_permutation := function(list) local indices, s, d; indices := []; for s in list[1] do d := Int(s); if d = fail then return fail; fi; Add(indices, d); od; if Length(indices) < 2 then return (); elif list[2] then return MappingPermListList(indices, Concatenation(indices{[2..Length(indices)]}, [indices[1]])); else return Transformation(indices); fi; end; ############################################################################### ## ## Parses a single state string, e.g. "a = (b, c, d)" ## Returns list [id, states, perm], where ## id is the name of the given state, ## states is a list of states as associative words in list representation, ## perm is the permutation. ## Modifies names in place. ## E.g. "a = (1, a)", [] -> ["a", [[], [1]], ()], ["a"] ## __AG_parse_state := function(str, names) local id_and_def, id, def, states, perm, i, p; id_and_def := SplitString(str, "="); Perform(id_and_def, NormalizeWhitespace); if Length(id_and_def) <> 2 or not IsEmpty(Filtered(id_and_def, IsEmpty)) then Error("Invalid state '", str, "'"); fi; id := id_and_def[1]; def := __AG_split_perms(id_and_def[2]); if IsEmpty(def) then Error("Invalid state '", str, "'"); fi; states := []; perm := (); for i in [1..Length(def)] do if i = 1 and def[i][2] and not __AG_is_permutation(def[i][1]) then states := __AG_make_states(def[i][1], names, str); else p := __AG_make_permutation(def[i]); if p = fail then Error("Invalid permutation ", def[i], " in '", str, "'"); fi; perm := perm * p; fi; od; return [id, states, perm]; end; ############################################################################### ## ## AG_ParseAutomatonStringFR(<str>) ## ## Same as AG_ParseAutomatonString, except it does functionally recursive ## automata. ## Returns a list [names, table] where names is a list of automata states names, ## and table is the table representing an FR automaton, as in ??? ## InstallGlobalFunction(AG_ParseAutomatonStringFR, function(str) local aut_list, aut_states, alph, i, j, k, s, largest_moved_point, word, letter, names, states; largest_moved_point := function(p) if IsPerm(p) then return LargestMovedPointPerm(p); else return DegreeOfTransformation(p); fi; end; names := []; states := __AG_split_states(str); states := List(states, s -> __AG_parse_state(s, names)); alph := Maximum(List(states, s -> largest_moved_point(s[3]))); aut_states := []; for s in states do if s[1] in aut_states then Error("Duplicate state name '", s[1], "' in '", str, "'"); fi; Add(aut_states, s[1]); if Length(s[2]) > alph then alph := Length(s[2]); fi; od; for s in states do if IsEmpty(s[2]) then s[2] := List([1..alph], i -> []); elif Length(s[2]) <> alph then Error("not enough states in '", s[1], "': '", str, "'"); fi; od; aut_list := []; for i in [1..Length(states)] do s := states[i]; for j in [1..alph] do word := s[2][j]; for k in [1..Length(word)] do letter := AbsInt(word[k]); if not names[letter] in aut_states then Error("invalid state '", names[letter], "'"); fi; if word[k] > 0 then word[k] := Position(aut_states, names[letter]); else word[k] := -Position(aut_states, names[letter]); fi; od; od; Add(aut_list, Concatenation(s[2], [s[3]])); od; return [aut_states, aut_list]; end); ############################################################################### ## ## AG_ParseAutomatonString(<str>) ## ## Parses strings of type "a = (a,a,1)(2,3), b = (a^2, b^-1, b)" ## InstallGlobalFunction(AG_ParseAutomatonString, function(str) local result, table, names, need_one, s, i, alph; result := AG_ParseAutomatonStringFR(str); names := result[1]; table := result[2]; alph := Length(table[1]) - 1; need_one := false; for s in table do for i in [1..alph] do if Length(s[i]) = 0 then need_one := true; s[i] := Length(table) + 1; elif Length(s[i]) = 1 then if s[i][1] < 0 then Error("functionally recursive automaton: ", str); fi; s[i] := s[i][1]; else Error("functionally recursive automaton: ", str); fi; od; od; if need_one then Add(names, 1); Add(table, List([1..alph], i -> Length(table)+1)); table[Length(table)][alph+1] := (); fi; return [names, table]; end); # AG_Printf := function(arg) # local format, arg_ind, i, len, c, s; # # format := arg[1]; # arg_ind := 2; # i := 1; # len := Length(format); # s := ""; # # while i <= len do # c := format[i]; # if c = '%' then # if i = len then # Error("trailing % in format string '", format, "'"); # fi; # if format[i+1] = '%' then # Add(s, '%'); # elif format[i+1] = 's' then # Print(s, arg[arg_ind]); # arg_ind := arg_ind + 1; # s := ""; # else # Error("unknown format sequence %", format[i+1], " in format string '", format, "'"); # fi; # i := i + 2; # else # Add(s, c); # i := i + 1; # fi; # od; # # if s <> "" then # Print(s); # fi; # end;