Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W rws.gi automgrp package Yevgen Muntyan #W Dmytro Savchuk ## automgrp v 1.3 ## #Y Copyright (C) 2003 - 2016 Yevgen Muntyan, Dmytro Savchuk ## DeclareGlobalFunction("__AG_FindRelators"); # It's not an IsRewritingSytem object DeclareCategory("IsAGRewritingSystem", IsObject); DeclareRepresentation("IsAGRewritingSystemRep", IsComponentObjectRep, ["rels", # list of relators, they are words in the family's free group "kb", # Knuth-Bendix rewriting system "fam", # the automata family "fpg_fam", # family of the elements from FP group <freegroup / rels> "fpm_fam", # family of the elements of FP monoid obtained from the above group "mhom", # isomorphism from the FP group to the FP monoid ]); __AG_CreateRewritingSystem := function(fam, rels) local grp, fr_grp, fp_grp, fp_mon, fmon, ord, m_gens, rws, rws_data; rws_data := rec(fam := fam); if rels = fail then rels := __AG_FindRelators(fam, AG_Globals.max_rws_relator_len); fi; rws_data.rels := Difference(rels, [Word(One(fam))]); if IsAutomFamily(fam) then grp := GroupOfAutomFamily(fam); else grp := GroupOfSelfSimFamily(fam); fi; fr_grp := UnderlyingFreeGroup(grp); fp_grp := fr_grp / rels; rws_data.mhom := IsomorphismFpMonoid(fp_grp); fp_mon := Image(rws_data.mhom); fmon := FreeMonoidOfFpMonoid(fp_mon); rws_data.fpg_fam := FamilyObj(One(fp_grp)); rws_data.fpm_fam := FamilyObj(One(fp_mon)); m_gens := GeneratorsOfMonoid(fmon); # Print("mgens1=",m_gens,"\n"); # m_gens := Permuted(m_gens, Product(List([1..Length(m_gens)/2], k->(2*k-1, 2*k)))); # Print("mgens2=",m_gens,"\n"); ord := ShortLexOrdering(FamilyObj(One(fmon)), m_gens); rws_data.kb := KnuthBendixRewritingSystem(fp_mon, ord); MakeConfluent(rws_data.kb); rws := Objectify(NewType(NewFamily("AGRewritingSystem"), IsAGRewritingSystem and IsAGRewritingSystemRep), rws_data); return rws; end; __AG_ReducedForm := function(rws, word) local reduced, word_mon; word_mon := ImageElm(rws!.mhom, ElementOfFpGroup(rws!.fpg_fam, word)); reduced := ReducedForm(rws!.kb, UnderlyingElement(word_mon)); word_mon := ElementOfFpMonoid(rws!.fpm_fam, reduced); return UnderlyingElement(PreImagesRepresentative(rws!.mhom, word_mon)); end; InstallGlobalFunction(__AG_FindRelators, function(fam, max_len) local fr_grp, w, elm, rels; if fam!.rws = fail then rels := []; else rels := List(fam!.rws!.rels); fi; fr_grp := UnderlyingFreeGroup(fam); # XXX FindRelations? for w in fr_grp do if Length(w) > max_len then break; fi; if IsAutomFamily(fam) then elm := Autom(w, fam); else elm := SelfSim(w, fam); fi; if IsOne(elm) then Add(rels, w); fi; od; return Difference(rels, [One(fr_grp)]); end); __AG_UpdateRewritingSystem := function(arg) local fam, max_len, new_rels; fam := arg[1]; if Length(arg) > 1 then max_len := arg[2]; else max_len := AG_Globals.max_rws_relator_len; fi; new_rels := __AG_FindRelators(fam, max_len); if fam!.rws = fail or new_rels <> fam!.rws!.rels then fam!.rws := __AG_CreateRewritingSystem(fam, new_rels); fi; return fail; end; __AG_UseRewritingSystem := function(fam, use) if fam!.use_rws <> use then if use then if fam!.rws = fail then fam!.rws := __AG_CreateRewritingSystem(fam, fail); fi; fi; fam!.use_rws := use; fi; end; __AG_RewritingSystem := function(fam) return fam!.rws; end; __AG_AddRelators := function(fam, rels) local old_rels; if fam!.rws = fail then old_rels := []; else old_rels := fam!.rws!.rels; fi; rels := Difference(Union(old_rels, rels), [One(UnderlyingFreeGroup(fam))]); if rels <> old_rels then fam!.rws := __AG_CreateRewritingSystem(fam, rels); fi; end; InstallMethod(AG_ReducedForm, [IsAGRewritingSystem, IsAssocWord], function(rws, w) return __AG_ReducedForm(rws, w); end); InstallMethod(AG_ReducedForm, [IsAGRewritingSystem, IsList and IsAssocWordCollection], function(rws, words) return Difference(List(words, w -> __AG_ReducedForm(rws, w)), [One(words[1])]); end); __AG_ReducedFormOfGroup := function(group, fam, construct) local gens, rws; if not fam!.use_rws then return group; fi; gens := GeneratorsOfGroup(group); gens := List(AG_ReducedForm(fam!.rws, List(gens, a -> Word(a))), w -> construct(w, fam)); gens := Difference(gens, [One(group)]); if IsEmpty(gens) then return Group(One(group)); else return GroupWithGenerators(gens); fi; end; InstallMethod(AG_ReducedForm, [IsAutomGroup], function(group) return __AG_ReducedFormOfGroup(group, UnderlyingAutomFamily(group), Autom); end); InstallMethod(AG_ReducedForm, [IsSelfSimGroup], function(group) return __AG_ReducedFormOfGroup(group, UnderlyingSelfSimFamily(group), SelfSim); end); __AG_ReducedFormOfElm := function(g, construct) local fam; fam := FamilyObj(g); if not fam!.use_rws then return g; else return construct(AG_ReducedForm(fam!.rws, Word(g)), fam); fi; end; InstallMethod(AG_ReducedForm, [IsAutom], function(g) return __AG_ReducedFormOfElm(g, Autom); end); InstallMethod(AG_ReducedForm, [IsSelfSim], function(g) return __AG_ReducedFormOfElm(g, SelfSim); end); InstallMethod(AG_UseRewritingSystem, [IsObject], function(obj) AG_UseRewritingSystem(obj, true); end); InstallMethod(AG_UseRewritingSystem, [IsAutomFamily, IsBool], function(fam, use) __AG_UseRewritingSystem(fam, use); end); InstallMethod(AG_UseRewritingSystem, [IsAutomGroup, IsBool], function(grp, use) AG_UseRewritingSystem(UnderlyingAutomFamily(grp), use); end); InstallMethod(AG_UseRewritingSystem, [IsSelfSimFamily, IsBool], function(fam, use) __AG_UseRewritingSystem(fam, use); end); InstallMethod(AG_UseRewritingSystem, [IsSelfSimGroup, IsBool], function(grp, use) AG_UseRewritingSystem(UnderlyingSelfSimFamily(grp), use); end); InstallMethod(AG_UpdateRewritingSystem, [IsObject], function(obj) AG_UpdateRewritingSystem(obj, AG_Globals.max_rws_relator_len); end); InstallMethod(AG_UpdateRewritingSystem, [IsAutomFamily, IsPosInt], function(fam, max_len) __AG_UpdateRewritingSystem(fam, max_len); end); InstallMethod(AG_UpdateRewritingSystem, [IsAutomGroup, IsPosInt], function(grp, max_len) AG_UpdateRewritingSystem(UnderlyingAutomFamily(grp), max_len); end); InstallMethod(AG_UpdateRewritingSystem, [IsSelfSimFamily, IsPosInt], function(fam, max_len) __AG_UpdateRewritingSystem(fam, max_len); end); InstallMethod(AG_UpdateRewritingSystem, [IsSelfSimGroup, IsPosInt], function(grp, max_len) AG_UpdateRewritingSystem(UnderlyingSelfSimFamily(grp), max_len); end); InstallMethod(AG_RewritingSystem, [IsAutomFamily], function(fam) return __AG_RewritingSystem(fam); end); InstallMethod(AG_RewritingSystem, [IsAutomGroup], function(grp) return AG_RewritingSystem(UnderlyingAutomFamily(grp)); end); InstallMethod(AG_RewritingSystem, [IsSelfSimFamily], function(fam) return __AG_RewritingSystem(fam); end); InstallMethod(AG_RewritingSystem, [IsSelfSimGroup], function(grp) return AG_RewritingSystem(UnderlyingSelfSimFamily(grp)); end); InstallMethod(AG_RewritingSystemRules, [IsObject], function(obj) return Rules(AG_RewritingSystem(obj)!.kb); end); InstallMethod(AG_AddRelators, [IsAutomGroup, IsList and IsAssocWordCollection], function(obj, rels) __AG_AddRelators(UnderlyingAutomFamily(obj), rels); end); InstallMethod(AG_AddRelators, [IsAutomFamily, IsList and IsAssocWordCollection], function(obj, rels) __AG_AddRelators(obj, rels); end); InstallMethod(AG_AddRelators, [IsSelfSimGroup, IsList and IsAssocWordCollection], function(obj, rels) __AG_AddRelators(UnderlyingSelfSimFamily(obj), rels); end); InstallMethod(AG_AddRelators, [IsSelfSimFamily, IsList and IsAssocWordCollection], function(obj, rels) __AG_AddRelators(obj, rels); end); InstallMethod(AG_AddRelators, [IsObject, IsList and IsAutomCollection], function(obj, list) AG_AddRelators(obj, List(list, g -> Word(g))); end); InstallMethod(AG_AddRelators, [IsObject, IsList and IsSelfSimCollection], function(obj, list) AG_AddRelators(obj, List(list, g -> Word(g))); end);