Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W selfs.gi automgrp package Yevgen Muntyan #W Dmytro Savchuk ## automgrp v 1.3 ## #Y Copyright (C) 2003 - 2016 Yevgen Muntyan, Dmytro Savchuk ## InstallGlobalFunction(ReduceWord, function(v) local i, b; b := []; for i in [1..Length(v)] do if v[i] <> 1 then Add(b, v[i]); fi; od; return b; end); InstallGlobalFunction(ProjectWord, function(w, s, G) local i, perm, d, proj; d := Length(G[1])-1; if s > d or s < 1 then Error("Incorrect index of a subtree"); fi; proj := []; perm := (); for i in [1..Length(w)] do Add(proj, G[w[i]][s^perm]); perm := perm*G[w[i]][d+1]; od; return proj; end); InstallGlobalFunction(WordActionOnFirstLevel, function(w, G) local i, perm, d; d := Length(G[1])-1; perm := (); for i in [1..Length(w)] do perm := perm*G[w[i]][d+1]; od; return perm; end); InstallGlobalFunction(WordActionOnVertex, function(w, ver, G) local i, cur_w, new_ver, perm; new_ver := []; cur_w := ShallowCopy(w); for i in [1..Length(ver)] do perm := WordActionOnFirstLevel(cur_w, G); new_ver[i] := ver[i]^perm; cur_w := ProjectWord(cur_w, ver[i], G); od; return new_ver; end); InstallMethod(OrbitOfVertex, "for [IsList, IsTreeHomomorphism, IsCyclotomic]", true, [IsList, IsTreeHomomorphism, IsCyclotomic], function(ver, g, n) local i, ver_tmp, orb; i := 0; orb := []; ver_tmp := ver; while i < n and (ver <> ver_tmp or i = 0) do Add(orb, ver_tmp); ver_tmp := ver_tmp^g; i := i+1; od; return orb; end); InstallMethod(OrbitOfVertex, "for [IsList, IsTreeHomomorphism]", [IsList, IsTreeHomomorphism], function(ver, g) return OrbitOfVertex(ver, g, infinity); end); InstallMethod(OrbitOfVertex, "for [IsString, IsTreeHomomorphism, IsCyclotomic]", true, [IsString, IsTreeHomomorphism, IsCyclotomic], function(ver, g, n) local i, ver_tmp, orb, ch; ver_tmp := []; for i in [1..Length(ver)] do ch := Int(String([ver[i]])); if ch < 1 or ch > g!.deg then Error("received string ", ver, " does not represent a valid vertex"); fi; Add(ver_tmp, ch); od; ver := ver_tmp; i := 0; orb := []; ver_tmp := ver; while i < n and (ver <> ver_tmp or i = 0) do Add(orb, ver_tmp); ver_tmp := ver_tmp^g; i := i+1; od; return orb; end); InstallMethod(OrbitOfVertex, "for [IsString, IsTreeHomomorphism]", [IsString, IsTreeHomomorphism], function(ver, g) return OrbitOfVertex(ver, g, infinity); end); InstallMethod(PrintOrbitOfVertex, "for [IsList, IsTreeHomomorphism, IsCyclotomic]", [IsList, IsTreeHomomorphism, IsCyclotomic], function(ver, w, n) local orb, i, j; orb := OrbitOfVertex(ver, w, n); if w!.deg = 2 then for i in [1..Length(orb)] do for j in [1..Length(orb[1])] do # Print(orb[i][j]); if orb[i][j] = 1 then Print(" "); else Print("x"); fi; od; Print("\n"); od; else for i in [1..Length(orb)] do for j in [1..Length(orb[1])] do Print(orb[i][j]); od; Print("\n"); od; fi; end); InstallMethod(PrintOrbitOfVertex, "for [IsString, IsTreeHomomorphism]", [IsList, IsTreeHomomorphism], function(ver, g) PrintOrbitOfVertex(ver, g, infinity); end); InstallGlobalFunction(IsOneWordSelfSim, function(w, G) local i, IsOneWordIter, ReachedWords, d; IsOneWordIter := function(v) local i, j, perm; if v in ReachedWords then return true; else perm := (); for i in [1..Length(v)] do perm := perm*G[v[i]][d+1]; od; if perm <> () then return false; fi; Add(ReachedWords, v); for j in [1..d] do if not IsOneWordIter(ProjectWord(v, j, G)) then return false; fi; od; return true; fi; end; d := Length(G[1])-1; if Length(w) = 0 then return true; fi; ReachedWords := []; return IsOneWordIter(w); end); InstallGlobalFunction(IsOneWordContr, function(word, G) local IsOneWordContrLocal; IsOneWordContrLocal:=function(word) local i, b, l, v, c, k, res, t, w; w := ShallowCopy(word); # Print("w=",w,"\n"); if Length(w) = 0 then return true; fi; if Length(w) = 1 then if w = [1] then return true; else return false; fi; fi; if Length(w) mod 2 = 1 then Add(w, 1); fi; l := []; for i in [1..Length(w)/2] do Add(l, StructuralCopy(G[w[2*i-1]][w[2*i]])); od; # Print("l = ", l); # list c contains permutations c[i+1] = pi[1]*pi[2]*...*pi[i] c := [(), l[1][Length(l[1])]]; t := Length(l); for i in [2..t] do # Print("c[", i, "] = ", c[i], ", l[", i, "] = ", l[i][Length(l[i])], ";"); Add(c, c[i]*l[i][Length(l[i])]); l[i][Length(l[i])] := c[i]; od; if c[Length(c)] <> () then return false; fi; l[1][Length(l[1])] := (); b := []; for i in [1..Length(l)] do b[i] := Permuted(l[i],(l[i][Length(l[i])])^(-1)); od; i := 1; res := true; while res and (i <= Length(b[1])-1) do v := []; for k in [1..Length(b)] do Add(v, b[k][i]); od; v := ReduceWord(v); res := IsOneWordContrLocal(v); i := i+1; od; return res; end; return IsOneWordContrLocal(word); end); InstallGlobalFunction(AG_IsOneList, function(w, G) if IsList(G[1][1]) then return IsOneWordContr(w, G); else return IsOneWordSelfSim(w, G); fi; end); InstallMethod(AG_MinimizedAutomatonList, "for [IsAutomGroup]", [IsAutomGroup], function(H) return AG_AddInversesListTrack(List(AutomatonList(H), x -> List(x))); end); InstallGlobalFunction(CONVERT_ASSOCW_TO_LIST, function(w) local w_list, w_ext, i, j, numstates, cur_gen; numstates := FamilyObj(w)!.numstates; w_list := []; w_ext := ExtRepOfObj(w!.word); for i in [1..Length(w_ext)/2] do if w_ext[2*i] > 0 then cur_gen := w_ext[2*i-1]; else cur_gen := w_ext[2*i-1]+numstates; fi; for j in [1..AbsInt(w_ext[2*i])] do Add(w_list, cur_gen); od; od; return w_list; end); InstallGlobalFunction(IsOneContr, function(a) local a_list, a_list_orig, track_l, Gi, i; a_list_orig := CONVERT_ASSOCW_TO_LIST(a); Gi := AG_MinimizedAutomatonList(GroupOfAutomFamily(FamilyObj(a))); track_l := Gi[3]; #a_list := []; #for i in [1..Length(a_list_orig)] do Add(a_list, track_l[a_list_orig[i]]); od; a_list := List(a_list_orig, i -> track_l[i]); return IsOneWordContr(a_list, AG_ContractingTable(GroupOfAutomFamily(FamilyObj(a)))); end); ############################################################################### ## #M AG_IsOneList(w, G) (IsList, IsAutomGroup) ## #InstallGlobalFunction(AG_IsOneList, #function(w, G) # if HasIsContracting(G) and IsContracting(G) and UseContraction(G) then # return IsOneWordContr(w, AG_ContractingTable(G)); # else # return IsOneWordSelfSim(w, AG_MinimizedAutomatonList(G)[1]); # fi; #end); InstallGlobalFunction(AG_ChooseAutomatonList, function(G) if HasIsContracting(G) and IsContracting(G) and UnderlyingAutomFamily(G)!.use_contraction then return AG_ContractingTable(G); else return AG_MinimizedAutomatonList(G)[1]; fi; end); InstallMethod(AG_OrderOfElement, "for [IsList, IsList, IsCyclotomic]", true, [IsList, IsList, IsCyclotomic], function(v, G, size) local w, k; v := ReduceWord(v); w := StructuralCopy(v); k := 1; if Length(G[1]) = 3 then while (not AG_IsOneList(w, G)) and k < size do Append(w, w); # Print(w, ";"); k := 2*k; od; else while (not AG_IsOneList(w, G)) and k < size do Append(w, v); # Print(w, ";"); k := k+1; od; fi; if AG_IsOneList(w, G) then return k; else return fail; fi; end); InstallMethod(AG_OrderOfElement, "for [IsList, IsList, IsPosInt]", [IsList, IsList], function(v, G) return AG_OrderOfElement(v, G, infinity); end); InstallGlobalFunction(GeneratorActionOnVertex, function(G, g, w) local i, v, gen, d; d := Length(G[1])-1; gen := g; v := []; for i in [1..Length(w)] do Add(v, (w[i]+1)^G[gen][d+1]-1); gen := G[gen][w[i]+1]; od; return v; end); InstallGlobalFunction(AG_NumberOfVertex, function(w, d) local i, s; s := 0; for i in [1..Length(w)] do s := s+w[i]*d^(Length(w)-i); od; return s; end); InstallGlobalFunction(NumberOfVertex, function(w, d) local i, s, w_loc; s := 0; if IsString(w) then w_loc := List(w, x -> Int(String([x]))-1); else w_loc := List(w, x -> x-1); fi; for i in w_loc do if i < 0 or i >= d then Error("received string ", w, " does not represent a valid vertex"); fi; od; for i in [1..Length(w)] do s := s+w_loc[i]*d^(Length(w)-i); od; return s+1; end); InstallGlobalFunction(AG_VertexNumber, function(k, n, d) local i, l, l1, t; t := k; l := []; while t > 0 do Add(l, t mod d); t := (t-(t mod d))/d; od; for i in [Length(l)+1..n] do Add(l, 0); od; l1 := []; for i in [1..n] do l1[i] := l[n-i+1]; od; return l1; end); InstallGlobalFunction(VertexNumber, function(k, n, d) local i, l, l1, t; t := k-1; l := []; while t > 0 do Add(l, t mod d); t := (t-(t mod d))/d; od; for i in [Length(l)+1..n] do Add(l, 0); od; l1 := []; for i in [1..n] do l1[i] := l[n-i+1]; od; return List(l1, x -> x+1); end); InstallGlobalFunction(GeneratorActionOnLevel, function(G, g, n) local l, d, i, s, v, w, k; s := (); d := Length(G[1])-1; l := []; for i in [1..d^n] do Add(l, 0); od; i := 0; while i < d^n do k := 0; while l[k+1] > 0 do k := k+1; od; w := AG_VertexNumber(k, n, d); v := StructuralCopy(w); i := i+1; repeat l[AG_NumberOfVertex(v, d)+1] := 1; v := GeneratorActionOnVertex(G, g, v); if v <> w then s := s*(k+1, AG_NumberOfVertex(v, d)+1); i := i+1; fi; until v = w; od; return s; end); InstallGlobalFunction(PermActionOnLevel, function(perm, big_lev, sm_lev, deg) local l, i; l := []; for i in [0..deg^sm_lev-1] do Add(l, Int(((1+i*deg^(big_lev-sm_lev))^perm-1)/(deg^(big_lev-sm_lev)))+1); od; return PermList(l); end); InstallGlobalFunction(WordActionOnLevel, function(G, w, n) local gen, perm; perm := (); for gen in w do perm := perm*GeneratorActionOnLevel(G, gen, n); od; return perm; end); InstallGlobalFunction(AG_IsWordTransitiveOnLevel, function(G, w, lev) return Length(OrbitPerms([WordActionOnLevel(G, w, lev)], 1)) = (Length(G[1])-1)^lev; end); InstallGlobalFunction(AG_GeneratorActionOnLevelAsMatrix, function(G, g, n) local perm, i, j, m, d; perm := GeneratorActionOnLevel(G, g, n); d := Length(G[1])-1; m := List([1..d^n], x -> List([1..d^n], x -> 0)); for i in [1..d^n] do m[i][i^perm] := 1; od; return m; end); InstallGlobalFunction(PermOnLevelAsMatrix, function(g, lev) local perm, i, j, m, d; perm := PermOnLevel(g, lev); d := g!.deg; m := List([1..d^lev], x -> List([1..d^lev], x -> 0)); for i in [1..d^lev] do m[i][i^perm] := 1; od; return m; end); InstallGlobalFunction(TransformationOnLevelAsMatrix, function(g, lev) local trans, i, j, m, d; trans := TransformationOnLevel(g, lev); d := DegreeOfTransformation(trans); m := List([1..d], x -> List([1..d], x -> 0)); for i in [1..d] do m[i][i^trans] := 1; od; return m; end); InstallGlobalFunction(InvestigatePairs, function(G) local i, j, k, i1, j1, k1, Pairs, Trip, n, IsPairEq, d, res, tmp; IsPairEq := function(i, j, k) # ij = k? local t, res; if (not IsList(Pairs[i][j])) or (IsList(Pairs[i][j]) and (Pairs[i][j][1] <> k)) then if (not IsList(Pairs[i][j])) and (Pairs[i][j] <> -1) then if Pairs[i][j] = k then return true; else return false; fi; fi; if IsList(Pairs[i][j]) then if Length(Pairs[i][j]) = 1 then Trip[i][j][Pairs[i][j][1]] := 0; else Trip[i1][j1][k1] := 0; return true; fi; fi; if Trip[i][j][k] = 0 then return false; else if G[i][d+1]*G[j][d+1] <> G[k][d+1] then Trip[i][j][k] := 0; return false; fi; Pairs[i][j] := [k]; t := 1; res := true; while res and (t <= d) do # Print("i = ", i, ", j = ", j, ", k = ", k, ", t = ", t, "; "); res := IsPairEq(G[i][t], G[j][t^G[i][d+1]], G[k][t]); t := t+1; od; if res then if Trip[i][j][k] <> 0 then Pairs[i][j] := [k, 1]; return true; else Pairs[i][j] := -1; return false; fi; else Trip[i][j][k] := 0; Pairs[i][j] := -1; return false; fi; fi; else return true; fi; end; Pairs := [[]]; Trip := []; n := Length(G); d := Length(G[1])-1; for j in [1..n] do Add(Pairs[1], j); od; for i in [2..n] do Add(Pairs, [i]); Trip[i] := []; for j in [2..n] do Pairs[i][j] := -1; Trip[i][j] := []; for k in [1..n] do Trip[i][j][k] := -1; od; od; od; # Print(Pairs); # Print(Trip); for i1 in [2..n] do for j1 in [2..n] do if Pairs[i1][j1] = -1 then k1 := 1; res := false; while (not res) and (k1 <= n) do res := IsPairEq(i1, j1, k1); # Print(Pairs, "\n"); for i in [2..n] do for j in [2..n] do if IsList(Pairs[i][j]) then if res then Pairs[i][j] := Pairs[i][j][1]; else Pairs[i][j] := -1; fi; fi; od; od; k1 := k1+1; od; if Pairs[i1][j1] = -1 then Pairs[i1][j1] := 0; fi; fi; od; od; return Pairs; end); InstallMethod(ContractingLevel, "for [IsAutomGroup]", [IsAutomGroup], function(H) if not HasIsContracting(H) then Info(InfoAutomGrp, 1, "If < H > is not contracting, the algorithm will never stop"); fi; FindNucleus(H,false); return ContractingLevel(H); end); InstallMethod(AG_ContractingTable, "for [IsAutomGroup]", [IsAutomGroup], function(H) local AG_ContractingTableLocal; AG_ContractingTableLocal := function(G) local lev, n, d, i, j, ContractingPair, Pairs, ContTable; ContractingPair := function(i, j) local l, k, t, PairAct, TmpList, g1, g2; if Pairs[i][j] <> 0 then PairAct := [Pairs[i][j]]; else PairAct := [[i, j]]; fi; for l in [1..lev] do TmpList := []; for t in [1..Length(PairAct)] do if not IsList(PairAct[t]) then for k in [1..d] do Add(TmpList, G[PairAct[t]][k]); od; else for k in [1..d] do g1 := G[PairAct[t][1]][k]; g2 := G[PairAct[t][2]][k^G[PairAct[t][1]][d+1]]; if Pairs[g1][g2] <> 0 then Add(TmpList, Pairs[g1][g2]); else Add(TmpList, [g1, g2]); fi; od; fi; od; PairAct := StructuralCopy(TmpList); od; Add(PairAct, GeneratorActionOnLevel(G, i, lev)*GeneratorActionOnLevel(G, j, lev)); return PairAct; end; lev := ContractingLevel(H); Pairs := InvestigatePairs(G); n := Length(G); d := Length(G[1])-1; ContTable := []; for i in [1..n] do Add(ContTable, []); for j in [1..n] do Add(ContTable[i], ContractingPair(i, j)); od; od; return ContTable; end; ################ AG_ContractingTable itself ################################# if not HasIsContracting(H) then Info(InfoAutomGrp, 1, "If < H > is not contracting, the algorithm will never stop"); fi; return AG_ContractingTableLocal(AG_GeneratingSetWithNucleusAutom(H)); end); InstallMethod(ContractingTable, "for [IsAutomGroup]", [IsAutomGroup], function(H) local T, i, j, k, deg, numstates; T := StructuralCopy(AG_ContractingTable(H)); deg := Length(T[1][1])-1; numstates := Length(T); for i in [1..numstates] do for j in [1..numstates] do for k in [1..deg] do T[i][j][k] := GeneratingSetWithNucleus(H)[T[i][j][k]]; od; T[i][j] := TreeAutomorphism(T[i][j]{[1..deg]} , T[i][j][deg+1]); od; od; return T; end); # The base of the code of the function below below was written by Andriy Russev InstallGlobalFunction(AG_MinimizationOfAutomatonListTrack, function(A) local n, perms, m, classes, states, list, i, j, ids, temp, s, d, new_as_old, old_as_new, aut_list, perm, state; n := Length(A); d:=Length(A[1])-1; perms := SSortedList(List(A,x->x[d+1])); # In the minimization process the set of states is partitioned into classes m := Length(perms); # number of states of automaton A # "classes" contains classes of states. To each state of automaton A we assign an number from 1 to m # (the first element in the list; if the class is not "finished", we add n) classes := List([1..n], x -> [Position(perms, A[x][d+1])]); # Canonical representatives of classes of states states := []; # The list of states of A that have not been classified yet list := [1..n]; # At this moment all the states that belong to the same class act identically # on words of length 1. During each iteration, classes consist of states that # act identically on the words of length k will be partitioned into smalled # subclasses of states that act identically on words of length k+1. # If no class was partitioned during an iteration, then all the states in # each class are equivalent and act identically on words of arbitrary length. # This is the end of minimization procedure while true do # states from each class act identically on all words of length k. for i in list do # Define classes for the states of the first level classes[i][2] := List(A[i]{[1..d]}, x -> classes[x][1]); od; # the extended identifier of a class contains information about the action # of this state, and of its first level states on words of length k. # I.e., it describes the action of the state on words of the length k+1. # If extended identifiers of states coincide, then these states act # identically on words of length k+1. # Update the identifiers of classes; save to "temp" the list of classes # that contain one state ids := []; temp := []; s := Length(states); for i in list do j := Position(ids, classes[i]); if j = fail then Add(ids, ShallowCopy(classes[i])); j := Length(ids); temp[j] := i; else Unbind(temp[j]); fi; classes[i][1] := s + j + n; od; # Check if new classes created during the iteration if s + Length(ids) = m then break; fi; m := s + Length(ids); # Find canonical representatives of classes that contain only a single state of A temp := Compacted(temp); for i in temp do s := s + 1; classes[i][1] := s; states[s] := i; od; # remove all classes with one state from future iterations. SubtractSet(list, temp); od; # Find canonical representatives of the remaining classes ids := []; for i in list do classes[i][1] := classes[i][1] - n; j := Position(ids, classes[i]); if j = fail then Add(ids, classes[i]); states[classes[i][1]] := i; fi; od; aut_list:=List(states, x -> Flat([List(A[x]{[1..d]}, y -> classes[y][1]), A[x][d+1]])); old_as_new:=List(classes,c->c[1]); new_as_old:=List([1..Length(states)],x->Position(old_as_new,x)); #Now sort the new list in the same order as the old states perm:=Sortex(new_as_old); aut_list:=Permuted(aut_list,perm); for state in aut_list do for i in [1..d] do state[i]:=state[i]^perm; od; od; Apply(old_as_new, x->x^perm); return [aut_list, new_as_old, old_as_new]; end); InstallGlobalFunction(AG_MinimizationOfAutomatonList, function(G) return AG_MinimizationOfAutomatonListTrack(G)[1]; end); InstallGlobalFunction(AG_AddInversesListTrack, function(H) local d, n, G, idEl, st, i, perm, inv, minimized_autlist; ## track_s - new generators in terms of old ones ## track_l - old generators in terms of new ones d := Length(H[1])-1; n := Length(H); if n < 1 or d < 1 then return fail; fi; idEl := Flat([List([1..d],x->1),()]); G := [idEl]; for i in [1..n] do Add(G, StructuralCopy(H[i])); od; for st in [2..n+1] do for i in [1..d] do G[st][i] := G[st][i]+1; od; od; for st in [2..n+1] do inv := []; perm := G[st][d+1]^(-1); for i in [1..d] do Add(inv, G[st][i^perm]+n); od; Add(inv, perm); Add(G, inv); od; # return AG_MinimizationOfAutomatonListTrack(G, [0..Length(G)-1], [2..Length(G)]); minimized_autlist := AG_MinimizationOfAutomatonListTrack(G); return [minimized_autlist[1], List(minimized_autlist[2],x->x-1), minimized_autlist[3]{[2..Length(minimized_autlist[3])]}]; end); InstallGlobalFunction(AG_AddInversesList, function(H) return AG_AddInversesListTrack(H)[1]; end); InstallMethod(UseContraction, "for [IsAutomGroup]", true, [IsAutomGroup], function(G) local H; H := GroupOfAutomFamily(UnderlyingAutomFamily(G)); if not HasIsContracting(H) then Print("Error in UseContraction(<G>): It is not known whether the group of family is contracting\n"); return fail; elif not IsContracting(H) then Print("Error in UseContraction(<G>): The group of family is not contracting"); return fail; fi; # IsContracting returns either true or false or an error (it can not return fail) UnderlyingAutomFamily(G)!.use_contraction := true; return true; end); InstallMethod(DoNotUseContraction, "for [IsAutomGroup]", true, [IsAutomGroup], function(G) UnderlyingAutomFamily(G)!.use_contraction := false; return true; end); InstallMethod(FindNucleus, "for [IsAutomatonGroup, IsCyclotomic, IsBool]", true, [IsAutomatonGroup, IsCyclotomic, IsBool], function(H, max_nucl, print_info) local G, g, Pairs, i, j, PairsToAdd, AssocWPairsToAdd, res, ContPairs, n, d, found, num, DoesPairContract, AddPairs, lev, maxlev, tmp, Nucl, IsElemInNucleus, nucl_final, cur_nucl, cur_nucl_tmp, Hi, track_s, track_l, G_track, automgens, cur_nucl_length, info; # DoesPairContract := function(i, j, lev) # local t, res; # if lev > maxlev then maxlev := lev; fi; # # # ContPairs[i][j] may take the following values: # # -1 - [i, j] was not met before # # 1 - [i, j] contracts # # 2 - [i, j] was met above in the tree # # if (ContPairs[i][j] = 1) then return true; fi; # if Pairs[i][j] <> 0 then # ContPairs[i][j] := 1; # return true; # fi; # # if we've seen this pair before it needs to be in the nucleus # if ContPairs[i][j] = 2 then return [i, j]; fi; # t := 1; res := true; # ContPairs[i][j] := 2; # while res = true and (t <= d) do # res := DoesPairContract(G[i][t], G[j][t^G[i][d+1]], lev+1); # t := t+1; # od; # if res = true then # ContPairs[i][j] := 1; # return true; # else return res; # fi; # end; DoesPairContract := function(i, j, lev) local t, res, localmaxlev; if lev > maxlev then maxlev := lev; fi; # ContPairs[i][j] may take the following values: # -1 - [i, j] was not met before # [k] - [i, j] contracts on level k # 2 - [i, j] was met above in the tree if IsList(ContPairs[i][j]) then if lev+ContPairs[i][j][1] > maxlev then maxlev := lev+ContPairs[i][j][1]; fi; return true; fi; if Pairs[i][j] <> 0 then ContPairs[i][j] := [0]; return true; fi; if ContPairs[i][j] = 2 then return [i,j]; fi; t := 1; res := true; ContPairs[i][j] := 2; localmaxlev := 0; while res = true and (t <= d) do res := DoesPairContract(G[i][t], G[j][t^G[i][d+1]], lev+1); if res = true then if ContPairs[G[i][t]][G[j][t^G[i][d+1]]][1]+1 > localmaxlev then localmaxlev := ContPairs[G[i][t]][G[j][t^G[i][d+1]]][1]+1; fi; fi; t := t+1; od; if res = true then ContPairs[i][j] := [localmaxlev]; return true; else return res; fi; end; AddPairs := function(i, j) local tmp, l, CurNum; if Pairs[i][j] > 0 then return Pairs[i][j]; fi; Pairs[i][j] := num; CurNum := num; Add(PairsToAdd, []); num := num+1; tmp := []; for l in [1..d] do Add(tmp, AddPairs(G[i][l], G[j][l^G[i][d+1]])); od; Add(tmp, G[i][d+1]*G[j][d+1]); Append(PairsToAdd[CurNum-n], tmp); AssocWPairsToAdd[CurNum-n] := cur_nucl[i]*cur_nucl[j]; return CurNum; end; IsElemInNucleus := function(g) local i, res; if g in tmp then for i in [Position(tmp, g)..Length(tmp)] do if not (tmp[i] in Nucl) then Add(Nucl, tmp[i]); fi; od; return g = tmp[1]; fi; Add(tmp, g); res := false; i := 1; while (not res) and i <= d do res := IsElemInNucleus(G[g][i]); i := i+1; od; Remove(tmp); return res; end; # ****************** FindNucleus itself ******************************* if HasIsContracting(H) and not IsContracting(H) then return fail; fi; automgens := UnderlyingAutomFamily(H)!.automgens; d := UnderlyingAutomFamily(H)!.deg; cur_nucl := [One(UnderlyingAutomFamily(H))]; Hi := StructuralCopy(AG_MinimizedAutomatonList(H)); # Print("Gi = ", Gi, "\n"); G := Hi[1]; track_s := Hi[2]; track_l := Hi[3]; for i in [2..Length(track_s)] do Add(cur_nucl, automgens[track_s[i]]); od; found := false; while (not found) and Length(G) < max_nucl do res := true; maxlev := 0; ContPairs := []; Pairs := InvestigatePairs(G); n := Length(G); # Print("n = ", n, "\n"); if print_info = true then Print("Trying generating set with ", n, " elements\n"); else Info(InfoAutomGrp, 3, "Trying generating set with ", n, " elements"); fi; # for i in [1..n] do # Add(ContPairs, [1]); # for j in [1..n-1] do # if i = 1 then Add(ContPairs[i], 1); # else Add(ContPairs[i], -1); # fi; # od; # od; for i in [1..n] do Add(ContPairs, [[0]]); for j in [1..n-1] do if i = 1 then Add(ContPairs[i], [0]); else Add(ContPairs[i], -1); fi; od; od; i := 1; while res = true and (i <= n) do j := 1; while res = true and (j <= n) do #Print("i = ", i, ", j = ", j, "\n"); if ContPairs[i][j] = -1 then res := DoesPairContract(i, j, 0); fi; if res <> true then PairsToAdd := []; AssocWPairsToAdd := []; # num represents current number of generators num := n+1; AssocWPairsToAdd := []; AddPairs(res[1], res[2]); if print_info = true then Print("Elements added:", List(AssocWPairsToAdd, x -> x!.word), "\n"); else Info(InfoAutomGrp, 3, "Elements added:", List(AssocWPairsToAdd, x -> x!.word)); fi; Append(G, PairsToAdd); # Print("G = ", G, "\n"); Append(cur_nucl, AssocWPairsToAdd); G_track := AG_AddInversesListTrack(G); # Print("G_track = ", G_track, "\n"); G := G_track[1]; cur_nucl_tmp := []; cur_nucl_tmp := [One(UnderlyingAutomFamily(H))]; cur_nucl_length := Length(cur_nucl); for i in [2..Length(G_track[2])] do if G_track[2][i] <= cur_nucl_length then Add(cur_nucl_tmp, cur_nucl[G_track[2][i]]); else Add(cur_nucl_tmp, cur_nucl[G_track[2][i]-cur_nucl_length]^-1); fi; od; cur_nucl := StructuralCopy(cur_nucl_tmp); fi; j := j+1; od; i := i+1; od; if res = true then found := true; fi; od; if not found then return fail; fi; Nucl := []; # first add elements of cycles for i in [1..Length(G)] do tmp := []; if not (i in Nucl) then IsElemInNucleus(i); fi; od; # now add sections of elements for g in Nucl do for i in [1..d] do if not (G[g][i] in Nucl) then Add(Nucl, G[g][i]); fi; od; od; # Print("Nucleus:", Nucl, "\n"); nucl_final := []; for i in Nucl do Add(nucl_final, cur_nucl[i]); od; SetIsContracting(H, true); SetGroupNucleus(H, nucl_final); SetGeneratingSetWithNucleus(H, cur_nucl); SetAG_GeneratingSetWithNucleusAutom(H, G); SetGeneratingSetWithNucleusAutom(H, MealyAutomaton(G)); SetContractingLevel(H, maxlev); UseContraction(H); return [nucl_final, cur_nucl, GeneratingSetWithNucleusAutom(H)]; end); InstallMethod(FindNucleus, "for [IsAutomatonGroup, IsBool]", true, [IsAutomatonGroup, IsBool], function(H, print_info) return FindNucleus(H, infinity, print_info); end); InstallMethod(FindNucleus, "for [IsAutomatonGroup, IsCyclotomic]", true, [IsAutomatonGroup, IsCyclotomic], function(H, max_nucl) return FindNucleus(H, max_nucl, true); end); InstallMethod(FindNucleus, "for [IsAutomatonGroup]", true, [IsAutomatonGroup], function(H) return FindNucleus(H, infinity, true); end); InstallMethod(IsContracting, "for [IsAutomGroup]", true, [IsAutomGroup], function(G) local res; if IsSelfSimilar(G) = false then Info(InfoAutomGrp, 3, "The group <G> is not self-similar, so it is not contracting"); return false; elif not IsAutomatonGroup(G) then Print("Represent <G> as a group generated by finite automaton\n"); return fail; fi; if FindNucleus(G, 50, false) <> fail then return true; fi; if IsNoncontracting(G, 10, 10) = true then return false; fi; Info(InfoAutomGrp, 3, "You can try FindNucleus( <G>, <max_nucl> ) or"); Info(InfoAutomGrp, 3, " IsNoncontracting( <G>, <lengh>, <depth> ) with bigger bounds"); TryNextMethod(); end); InstallMethod(GroupNucleus, "for [IsAutomGroup]", true, [IsAutomGroup], function(G) FindNucleus(G, false); return GroupNucleus(G); end); InstallMethod(GeneratingSetWithNucleus, "for [IsAutomGroup]", true, [IsAutomGroup], function(G) FindNucleus(G, false); return GeneratingSetWithNucleus(G); end); InstallMethod(GeneratingSetWithNucleusAutom, "for [IsAutomGroup]", true, [IsAutomGroup], function(G) FindNucleus(G, false); return GeneratingSetWithNucleusAutom(G); end); InstallMethod(AG_GeneratingSetWithNucleusAutom, "for [IsAutomGroup]", true, [IsAutomGroup], function(G) FindNucleus(G, false); return AG_GeneratingSetWithNucleusAutom(G); end); InstallGlobalFunction(InversePerm, function(G) local i, j, viewed, inv, found; viewed := []; inv := (); for i in [1..Length(G)] do if not (i in viewed) then j := 1; found := false; while j <= Length(G) and not found do #Print("[", i, ", ", j, "]\n"); if AG_IsOneList([i, j], G) then found := true; if i <> j then inv := inv*(i, j); Append(viewed, [i, j]); else Add(viewed, i); fi; fi; j := j+1; od; fi; od; return inv; end); InstallGlobalFunction(AG_AutomPortraitMain, function(w) local PortraitIter, bndry, inv, d, Perm_List, max_lev, G, w_list, w_list_orig, Gi, track_l, nucl; PortraitIter := function(v, lev, plist) local i, j, tmpv, sigma; for i in [1..Length(G)] do tmpv := StructuralCopy(v); Add(tmpv, i); if AG_IsOneList(tmpv, G) then Add(bndry, [lev, nucl[i^inv]]); Add(plist, nucl[i^inv]); return; fi; od; for i in [1..d] do tmpv := []; sigma := (); for j in v do Add(tmpv, G[j][i^sigma]); sigma := sigma*G[j][d+1]; od; if i = 1 then Add(plist, sigma);fi; Add(plist, []); PortraitIter(tmpv, lev+1, plist[i+1]); od; end; d := w!.deg; G := AG_GeneratingSetWithNucleusAutom(GroupOfAutomFamily(FamilyObj(w))); nucl := GeneratingSetWithNucleus(GroupOfAutomFamily(FamilyObj(w))); Gi := AG_MinimizedAutomatonList(GroupOfAutomFamily(FamilyObj(w))); track_l := Gi[3]; w_list_orig := CONVERT_ASSOCW_TO_LIST(w); w_list := List(w_list_orig, i -> track_l[i]); bndry := []; Perm_List := []; inv := InversePerm(G); max_lev := 0; PortraitIter(w_list, 0, Perm_List); return [d, bndry, Perm_List]; end); InstallGlobalFunction(AutomPortrait, function(w) return AG_AutomPortraitMain(w)[3]; end); InstallGlobalFunction(AutomPortraitBoundary, function(w) return AG_AutomPortraitMain(w)[2]; end); InstallGlobalFunction(AutomPortraitDepth, function(w) local bndry; return Maximum(List(AG_AutomPortraitMain(w)[2], x -> x[1])); end); ################################################################################ ## #F WritePortraitToFile. . . . . . . . . . .Writes portrait in a file in the form ## understandable by Maple # InstallGlobalFunction(WritePortraitToFile, function(p, file, add) # local WritePerm, l; # # WritePerm := function(perm) # local j; # AppendTo(file, "[ "); # if Length(perm) > 0 then # AppendTo(file, "`", perm[1], "`"); # for j in [2..Length(perm)] do # AppendTo(file, ", "); # WritePerm(perm[j]); # od; # fi; # AppendTo(file, " ]"); # end; # # # l := [p[1], List(p[2], x -> [x[1], x[2]!.word])]; # if add then AppendTo(file, "[ ", l[1], ", "); # else PrintTo(file, "[ ", l[2], ", "); # fi; # WritePerm(p[3]); # AppendTo(file, " ]"); # end); ################################################################################ ## #F WritePortraitsToFile. . . . . . . . . . . . .Writes portraitso of elements of ## a list in a file in the form understandable by Maple # InstallGlobalFunction(WritePortraitsToFile, function(lst, G, file, add) # local WritePerm, i, p; # # if add then AppendTo(file, "[ "); # else PrintTo(file, "[ "); # fi; # # for i in [1..Length(lst)] do # if i = 1 then # AppendTo(file, "[ ", lst[i], ", "); # else # AppendTo(file, ", [ ", lst[i], ", "); # fi; # p := AutomPortrait(lst[i], G); # WritePortraitToFile(p, file, true); # AppendTo(file, "]"); # # od; # end); InstallMethod(Growth, "for [IsAutomGroup, IsCyclotomic]", true, [IsAutomGroup, IsCyclotomic], function(G, max_len) local ElList, GrList, i, j, orig_gens, gen, gens, new_gen, g, len, viewed, oldgr, New, k, cur_els; # produce a symmetric generating set orig_gens := ShallowCopy(GeneratorsOfGroup(G)); Append(orig_gens, List(orig_gens, x -> x^-1)); gens := []; # select pairwise different generators for i in [1..Length(orig_gens)] do if not IsOne(orig_gens[i]) then new_gen := true; for j in [1..i-1] do if orig_gens[i] = orig_gens[j] then new_gen := false; fi; od; if new_gen then Add(gens, orig_gens[i]); fi; fi; od; ElList := [One(G)]; Append(ElList, ShallowCopy(gens)); GrList := [1, Length(gens)+1]; len := 1; while len < max_len and GrList[len] <> GrList[len+1] do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for gen in gens do g := ElList[i]*gen; New := true; if len = 1 then k := 1; else k := GrList[len-1]; fi; while New and k <= oldgr do if g = ElList[k] then New := false; fi; k := k+1; od; if New then Add(ElList, g); fi; od; od; Add(GrList, Length(ElList)); Print("There are ", Length(ElList), " elements of length up to ", len+1, "\n"); len := len+1; od; if GrList[len] = GrList[len+1] then SetSize(G, GrList[len]); fi; return GrList; end); InstallMethod(Growth, "for [IsTreeHomomorphismSemigroup, IsCyclotomic]", true, [IsTreeHomomorphismSemigroup, IsCyclotomic], function(G, max_len) local iter, g, i; iter := Iterator(G, max_len); for g in iter do od; return List(iter!.levels, x -> x[Length(x)]); end); InstallMethod(ListOfElements, "for [IsTreeHomomorphismSemigroup, IsCyclotomic]", true, [IsTreeHomomorphismSemigroup, IsCyclotomic], function(G, max_len) return FindElements(G, ReturnTrue, true, max_len); end); InstallMethod(AG_FiniteGroupId, "for [IsAutomatonGroup, IsPosInt]", true, [IsAutomatonGroup, IsCyclotomic], function(H, size) local gr, len, ElList, GrList, inv, i, j, k, oldgr, v, tmpv, New, IsNewRel, inverse, G, FinG, tmpl, push, ProductEls, act, rels, LongCycle; inverse := function(w) local i, iw; iw := []; for i in [1..Length(w)] do iw[i] := w[Length(w)-i+1]^inv; od; return iw; end; ProductEls := function(i, j) local t, v, tmpv; v := StructuralCopy(ElList[i]); Append(v, ElList[j]); for t in [1..Length(ElList)] do tmpv := StructuralCopy(v); Append(tmpv, inverse(ElList[t])); if AG_IsOneList(tmpv, G) then return t; fi; od; end; LongCycle := function(n) local l, i; l := []; for i in [2..n] do Add(l, i); od; Add(l, 1); return PermList(l); end; IsNewRel := function(v) local tmp, i, j, cyc, cycr, v_cyc, r_cyc, r, r_cyc_inv; cyc := LongCycle(Length(v)); for i in [0..Length(v)-1] do v_cyc := Permuted(v, cyc^i); if v_cyc[1] = v_cyc[Length(v)]^inv then return false; fi; for r in rels do cycr := LongCycle(Length(r)); for j in [0..Length(r)-1] do r_cyc := Permuted(r, cycr^j); r_cyc_inv := inverse(Permuted(r, cycr^j)); if PositionSublist(v_cyc, r_cyc) <> fail or PositionSublist(v_cyc, r_cyc_inv) <> fail then return false; fi; od; od; od; return true; end; ####################### _FiniteGroupId itself ######################################### gr := 1; len := 1; G := AG_ChooseAutomatonList(H); inv := InversePerm(G); if not HasIsFinite(H) then Info(InfoAutomGrp, 2, "warning, if < H > is infinite the algorithm will never stop"); fi; GrList := [1, Length(G)]; ElList := []; rels := []; for i in [1..Length(G)] do Add(ElList, [i]); od; while GrList[len+1] > GrList[len] and GrList[len+1] < size do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for j in [2..Length(G)] do v := StructuralCopy(ElList[i]); if j <> v[Length(v)]^inv then Add(v, j); New := true; if len = 1 then k := 1; else k := GrList[len-1]+1; fi; while New and k <= oldgr do tmpv := StructuralCopy(v); Append(tmpv, inverse(ElList[k])); if AG_IsOneList(tmpv, G) then New := false; ## show relations if IsNewRel(tmpv) then Add(rels, tmpv); # Info(InfoAutomGrp, 3, v, "*", ElList[k], "^(-1) = 1"); # Print(tmpv, "\n"); fi; fi; k := k+1; od; if New then Add(ElList, v); fi; fi; od; od; Add(GrList, Length(ElList)); Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); len := len+1; od; if GrList[len+1] > GrList[len] then return fail; fi; SetSize(H, GrList[len]); # in case of finite group construct Cayley table FinG := []; for i in [2..UnderlyingAutomFamily(H)!.numstates+1] do act := (); tmpl := []; while Length(tmpl) < Length(ElList) do j := 1; while j in tmpl do j := j+1; od; Add(tmpl, j); push := ProductEls(j, i); while push <> j do Add(tmpl, push); act := act*(j, push); push := ProductEls(push, i); od; od; Add(FinG, act); od; return GroupWithGenerators(FinG); end); InstallMethod(AG_FiniteGroupId, "for [IsAutomGroup]", [IsAutomGroup], function(G) return AG_FiniteGroupId(G, infinity); end); InstallMethod(AG_FiniteGroupId, "for [IsAutomGroup, IsCyclotomic]", [IsAutomGroup, IsCyclotomic], function(G, n) local ElList, GrList, i, j, orig_gens, gen, gens, new_gen, g, len, viewed, oldgr, New, k, ProductEls, FinG, tmpl, push, act, track_l, num_diff_gens, num_orig_gens, old_gens; ProductEls := function(i, j) local t; for t in [1..Length(ElList)] do if IsOne(ElList[i]*ElList[j]*ElList[t]^-1) then return t; fi; od; return fail; end; orig_gens := ShallowCopy(GeneratorsOfGroup(G)); num_orig_gens := Length(orig_gens); Append(orig_gens, List(orig_gens, x -> x^-1)); gens := []; # select pairwise different generators and track the original ones. # examlpe: assume b^2 = 1 # orig_gens = [a, e, a, b, b, c, a^-1, e^-1, a^-1, b^-1, b^-1, c^-1] # track_l = [1, 0, 1, 2, 2, 3, 4, 0, 4, 2, 2, 5 ] # gens = [a, b, c, a^-1, c^-1] # num_orig_gens = 6 # num_diff_gens = 3 track_l := []; for i in [1..Length(orig_gens)] do if IsOne(orig_gens[i]) then track_l[i] := 0; else new_gen := true; j := 1; while j < i and new_gen do if orig_gens[i] = orig_gens[j] then new_gen := false; track_l[i] := track_l[j]; fi; j := j+1; od; if new_gen then Add(gens, orig_gens[i]); track_l[i] := Length(gens); fi; if i = num_orig_gens then num_diff_gens := Length(gens); fi; fi; od; ElList := [One(G)]; Append(ElList, ShallowCopy(gens)); GrList := [1, Length(gens)+1]; len := 1; while len < n and GrList[len] <> GrList[len+1] do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for gen in gens do g := ElList[i]*gen; # Print("g = ", g, "\n\n"); New := true; if len = 1 then k := 1; else k := GrList[len-1]; fi; while New and k <= oldgr do # Print(g*ElList[k]^-1, "\n"); if IsOne(g*ElList[k]^-1) then New := false; fi; k := k+1; od; if New then Add(ElList, g); fi; od; od; Add(GrList, Length(ElList)); Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); len := len+1; od; if GrList[len] <> GrList[len+1] then return fail; fi; SetSize(G, GrList[len]); # in case of finite group construct Cayley table FinG := []; for i in [2..num_diff_gens+1] do act := (); tmpl := []; while Length(tmpl) < Length(ElList) do j := 1; while j in tmpl do j := j+1; od; Add(tmpl, j); push := ProductEls(j, i); while push <> j do Add(tmpl, push); act := act*(j, push); push := ProductEls(push, i); od; od; Add(FinG, act); od; # switch to the original generating set old_gens := []; for i in [1..num_orig_gens] do if track_l[i] = 0 then old_gens[i] := (); else old_gens[i] := FinG[track_l[i]]; fi; od; return GroupWithGenerators(old_gens); end); InstallGlobalFunction(AG_IsOneWordSubs, function(w, subs, G) local i, v; v := []; for i in w do Append(v, subs[i]); od; return AG_IsOneList(v, G); end); InstallMethod(FindGroupRelations, "for [IsList and IsAutomCollection, IsList, IsCyclotomic, IsCyclotomic]", true, [IsList and IsAutomCollection, IsList, IsCyclotomic, IsCyclotomic], function(subs_words, names, max_len, num_of_rels) local G, gens, Gi, H, rel, rels, rels0, k, track_s, track_l, AssocW, FindGroupRelationsLocal, gens_autom, i, j, subs, subs1, w_list, FindGroupRelationsSubsLocal, w_ext, w, automgens, numstates, F, cur_gen; AssocW := function(w) return Product(List(w, i -> gens[i])); end; FindGroupRelationsSubsLocal := function(subs, G) local gr, len, ElList, GrList, inv, i, j, k, oldgr, v, tmpv, New, IsNewRelS, inverse, inverseS, H, FinG, tmpl, push, ProductEls, act, rels, LongCycle, invslist, invs, origlength, w, invadded, AssocWrels; inverse := function(w) local i, iw; iw := []; for i in [1..Length(w)] do iw[i] := w[Length(w)-i+1]^inv; od; return iw; end; inverseS := function(w) local i, iw; iw := []; for i in [1..Length(w)] do iw[i] := w[Length(w)-i+1]^invs; od; return iw; end; ProductEls := function(i, j) local t, v, tmpv; v := StructuralCopy(ElList[i]); Append(v, ElList[j]); for t in [1..Length(ElList)] do tmpv := StructuralCopy(v); Append(tmpv, inverse(ElList[t])); if AG_IsOneList(tmpv, G) then return t; fi; od; end; LongCycle := function(n) local l, i; l := []; for i in [2..n] do Add(l, i); od; Add(l, 1); return PermList(l); end; IsNewRelS := function(v) local tmp, i, j, cyc, cycr, v_cyc, r_cyc, r, r_cyc_inv; cyc := LongCycle(Length(v)); for i in [0..Length(v)-1] do v_cyc := Permuted(v, cyc^i); if v_cyc[1] = v_cyc[Length(v)]^invs then return false; fi; for r in rels do cycr := LongCycle(Length(r)); for j in [0..Length(r)-1] do r_cyc := Permuted(r, cycr^j){[1..Int(Length(r)/2)+1]}; r_cyc_inv := inverseS(Permuted(r, cycr^j)){[1..Int(Length(r)/2)+1]}; if PositionSublist(v_cyc, r_cyc) <> fail or PositionSublist(v_cyc, r_cyc_inv) <> fail then return false; fi; od; od; od; return true; end; #************************ FindGroupRelationsSubsLocal itself **************************************************** rels := []; # G := GroupOfAutomFamily(FamilyObj(subs_words[1])); inv := InversePerm(G); #check if there are any identity elements in subs list for i in [1..Length(subs)] do if AG_IsOneList(subs[i], G) then Error(AssocW([i]), " = id, remove this element from a list and try again"); fi; od; AssocWrels := []; #check if there are any equal elements in subs list invslist := []; for i in [1..Length(subs)] do for j in [i..Length(subs)] do if i <> j and AG_IsOneList(Concatenation(subs[i], inverse(subs[j])), G) then Error(AssocW([i]), " = ", AssocW([j]), ", remove one of these elements from a list and try again"); fi; # Print(AG_IsOneList(Append(StructuralCopy(subs[i]), subs[j]), G), "\n"); # Print(Concatenation(subs[i], subs[j]), "\n"); if AG_IsOneList(Concatenation(subs[i], subs[j]), G) then invslist[i] := j; invslist[j] := i; Add(rels, [i, j]); Add(AssocWrels, AssocW([i, j])); Print(AssocW([i, j]), "\n"); fi; od; od; # add inverses to subs list origlength := Length(subs); invadded := false; for i in [1..origlength] do if not IsBound(invslist[i]) then invadded := true; Add(subs, inverse(subs[i])); Add(gens, gens[i]^-1); invslist[i] := Length(subs); invslist[Length(subs)] := i; fi; od; invs := PermList(invslist); GrList := [1, Length(subs)+1]; ElList := []; gr := 1; len := 1; for i in [1..Length(subs)] do Add(ElList, [i]); od; while GrList[len+1] > GrList[len] and len < max_len and Length(rels) < num_of_rels do for i in [GrList[len]..GrList[len+1]-1] do oldgr := Length(ElList); for j in [1..Length(subs)] do v := StructuralCopy(ElList[i]); if j <> v[Length(v)]^invs then Add(v, j); New := true; # k := 1; if len = 1 then k := 1; else k := GrList[len-1]; fi; while New and k <= oldgr do tmpv := StructuralCopy(v); Append(tmpv, inverseS(ElList[k])); if AG_IsOneWordSubs(tmpv, subs, G) then New := false; ## show relations if IsNewRelS(tmpv) then Add(rels, tmpv); if Length(AssocW(tmpv)) > 0 then Add(AssocWrels, AssocW(tmpv)); Print(AssocW(tmpv), "\n"); fi; fi; fi; k := k+1; od; if New then Add(ElList, v); fi; fi; od; od; Add(GrList, Length(ElList)+1); # Print("ElList[", len, "] = ", ElList, "\n"); Info(InfoAutomGrp,3,"There are ", Length(ElList) + 1, " elements of length up to ", len+1); len := len+1; od; return AssocWrels; end; #************************ FindGroupRelationsSubs itself **************************************************** if Length(subs_words) <> Length(names) then Error("The number of names must coincide with the number of generators"); fi; F := FreeGroup(names); G := GroupOfAutomFamily(FamilyObj(subs_words[1])); # gens is a mutable list of generators gens := ShallowCopy(GeneratorsOfGroup(F)); automgens := UnderlyingAutomFamily(G)!.automgens; numstates := UnderlyingAutomFamily(G)!.numstates; #convert associative words into lists subs1 := List(subs_words, CONVERT_ASSOCW_TO_LIST); Gi := StructuralCopy(AG_MinimizedAutomatonList(G)); # Print("Gi = ", Gi, "\n"); H := Gi[1]; track_s := Gi[2]; track_l := Gi[3]; subs := []; for w in subs1 do w_list := []; for i in [1..Length(w)] do Add(w_list, track_l[w[i]]); od; Add(subs, ShallowCopy(w_list)); od; rels0 := []; # for k in [1..Length(AutomatonList(G))] do # Print("Beam\n"); # if track_l[k] = 1 then Add(rels0, AssocW([k])); # elif track_s[track_l[k]] <> k then Add(rels0, AssocW([k, track_s[track_l[k]]+Length(AutomatonList(G))])); # fi; # od; rels := FindGroupRelationsSubsLocal(subs, AG_ChooseAutomatonList(G)); if rels = fail then return fail; fi; Append(rels0, rels); # Print(rels0); return rels0; end); InstallMethod(FindGroupRelations, "for [IsList and IsAutomCollection, IsList, IsCyclotomic]", true, [IsList and IsAutomCollection, IsList, IsCyclotomic], function(subs_words, names, max_len) return FindGroupRelations(subs_words, names, max_len, infinity); end); InstallMethod(FindGroupRelations, "for [IsList and IsAutomCollection, IsList]", [IsList and IsAutomCollection, IsList], function(subs_words, names) return FindGroupRelations(subs_words, names, infinity, infinity); end); InstallMethod(FindGroupRelations, "for [IsAutomGroup, IsCyclotomic, IsCyclotomic]", true, [IsAutomatonGroup, IsCyclotomic, IsCyclotomic], function(G, max_len, num_of_rels) local gens, Gi, H, rel, rels, rels0, k, track_s, track_l, AssocW, FindGroupRelationsLocal; AssocW := function(w) #Print(w); return Product(List(w, i -> gens[i])); end; FindGroupRelationsLocal := function(subs, G) local gr, len, ElList, GrList, inv, i, j, k, oldgr, v, tmpv, New, IsNewRelS, inverse, inverseS, H, FinG, tmpl, push, ProductEls, act, rels, LongCycle, invslist, invs, origlength, w, invadded, tmpv_orig, AssocWrels; inverse := function(w) local i, iw; iw := []; for i in [1..Length(w)] do iw[i] := w[Length(w)-i+1]^inv; od; return iw; end; inverseS := function(w) local i, iw; iw := []; for i in [1..Length(w)] do iw[i] := w[Length(w)-i+1]^invs; od; return iw; end; ProductEls := function(i, j) local t, v, tmpv; v := StructuralCopy(ElList[i]); Append(v, ElList[j]); for t in [1..Length(ElList)] do tmpv := StructuralCopy(v); Append(tmpv, inverse(ElList[t])); if AG_IsOneList(tmpv, G) then return t; fi; od; end; LongCycle := function(n) local l, i; l := [2..n]; Add(l, 1); return PermList(l); end; IsNewRelS := function(v) local tmp, i, j, cyc, cycr, v_cyc, r_cyc, r, r_cyc_inv; cyc := LongCycle(Length(v)); for i in [0..Length(v)-1] do v_cyc := Permuted(v, cyc^i); if v_cyc[1] = v_cyc[Length(v)]^invs then return false; fi; for r in rels do cycr := LongCycle(Length(r)); for j in [0..Length(r)-1] do r_cyc := Permuted(r, cycr^j){[1..Int(Length(r)/2)+1]};; r_cyc_inv := inverseS(Permuted(r, cycr^j)){[1..Int(Length(r)/2)+1]};; if PositionSublist(v_cyc, r_cyc) <> fail or PositionSublist(v_cyc, r_cyc_inv) <> fail then return false; fi; od; od; od; return true; end; #************************ FindGroupRelationsLocal itself **************************************************** rels := []; AssocWrels := []; inv := InversePerm(G); invslist := []; for i in [1..Length(subs)] do for j in [i..Length(subs)] do # Print(AssocW([Gi[2][i+1], Gi[2][j+1]])!.word, "\n"); if AG_IsOneList(Concatenation(subs[i], subs[j]), G) then invslist[i] := j; invslist[j] := i; if Length(AssocW([Gi[2][i+1], Gi[2][j+1]])!.word) > 0 then Add(rels, [i, j]); Add(AssocWrels, AssocW([Gi[2][i+1], Gi[2][j+1]])); Print( AssocW([Gi[2][i+1], Gi[2][j+1]])!.word, "\n"); fi; fi; od; od; invs := PermList(invslist); GrList := [1, Length(subs)+1]; ElList := []; gr := 1; len := 1; for i in [1..Length(subs)] do Add(ElList, [i]); od; while GrList[len+1] > GrList[len] and len < max_len and Length(rels) < num_of_rels do for i in [GrList[len]..GrList[len+1]-1] do oldgr := Length(ElList); for j in [1..Length(subs)] do v := StructuralCopy(ElList[i]); if j <> v[Length(v)]^invs then Add(v, j); New := true; # k := 1; if len = 1 then k := 1; else k := GrList[len-1]; fi; while New and k <= oldgr do tmpv := StructuralCopy(v); Append(tmpv, inverseS(ElList[k])); if AG_IsOneWordSubs(tmpv, subs, G) then New := false; ## show relations if IsNewRelS(tmpv) then # tmpv in the original generators tmpv_orig := []; for k in [1..Length(tmpv)] do tmpv_orig[k] := Gi[2][tmpv[k]+1]; od; Add(rels, tmpv); if Length(AssocW(tmpv_orig)!.word) > 0 then Add(AssocWrels, AssocW(tmpv_orig)); Print( AssocW(tmpv_orig)!.word, "\n"); fi; # Print(tmpv, "\n"); fi; fi; k := k+1; od; if New then Add(ElList, v); fi; fi; od; od; Add(GrList, Length(ElList)+1); # Print("ElList[", len, "] = ", ElList, "\n"); Info(InfoAutomGrp, 3, "There are ", Length(ElList) + 1, " elements of length up to ", len + 1); len := len+1; od; return AssocWrels; end; #************************ FindGroupRelations itself **************************************************** gens := ShallowCopy(UnderlyingAutomFamily(G)!.automgens); Gi := StructuralCopy(AG_MinimizedAutomatonList(G)); # Print("Gi = ", Gi, "\n"); H := Gi[1]; track_s := Gi[2]; track_l := Gi[3]; rels0 := []; # for k in [1..Length(AutomatonList(G))] do # Print("Beam\n"); # if track_l[k] = 1 then Add(rels0, AssocW([k])); # elif track_s[track_l[k]] <> k then Add(rels0, AssocW([k, track_s[track_l[k]]+Length(AutomatonList(G))])); # fi; # od; rels := FindGroupRelationsLocal(List([2..Length(H)], i -> [i]), AG_ChooseAutomatonList(G)); Append(rels0, rels); # Print(rels0); return rels0; end); InstallMethod(FindGroupRelations, "for [IsAutomGroup, IsCyclotomic]", true, [IsAutomatonGroup, IsCyclotomic], function(G, max_len) return FindGroupRelations(G, max_len, infinity); end); InstallMethod(FindGroupRelations, "for [IsAutomGroup]", [IsAutomatonGroup], function(G) return FindGroupRelations(G, infinity, infinity); end); InstallMethod(FindGroupRelations, "for [IsList and IsAutomCollection, IsCyclotomic, IsCyclotomic]", true, [IsList and IsAutomCollection, IsCyclotomic, IsCyclotomic], function(subs_words, max_len, num_of_rels) return FindGroupRelations(GroupWithGenerators(subs_words), max_len, infinity); end); InstallMethod(FindGroupRelations, "for [IsList and IsAutomCollection, IsCyclotomic]", true, [IsList and IsAutomCollection, IsCyclotomic], function(subs_words, max_len) return FindGroupRelations(subs_words, max_len, infinity); end); InstallMethod(FindGroupRelations, "for [IsList and IsAutomCollection]", [IsList and IsAutomCollection], function(subs_words) return FindGroupRelations(subs_words, infinity, infinity); end); InstallMethod(FindGroupRelations, "for [IsGroup, IsCyclotomic, IsCyclotomic]", true, [IsGroup, IsCyclotomic, IsCyclotomic], function(G, max_len, num_of_rels) local ElList, GrList, i, j, orig_gens, gen, gens, new_gen, g, len, oldgr, New, k, rels, rel, F, relsF, ElListF, genf, f, fgens, all_relsF, rel1, new_rel, r, orig_fgens, \ IsNewRel, CyclicConjugates, ngens, FFhom_images, FFhom, FGhom_images, FGhom, ElList_inv, inv_gens, cur_rel; IsNewRel := function(rel) local rel1, r; rel1 := rel; repeat for r in all_relsF do if PositionWord(rel1, Subword(r,1,Int(Length(r)/2)+1), 1) <> fail then return false; fi; od; rel1 := rel1^Subword(rel1, 1, 1); until rel1 = rel; return true; end; CyclicConjugates := function(rel) local rel1, conjs; rel1 := rel; conjs := []; repeat rel1 := rel1^Subword(rel1, 1, 1); Add(conjs, rel1); until rel1 = rel; return conjs; end; orig_gens := ShallowCopy(GeneratorsOfGroup(G)); ngens := Length(orig_gens); F := FreeGroup(ngens); orig_fgens := ShallowCopy(GeneratorsOfGroup(F)); FFhom_images := ShallowCopy(GeneratorsOfGroup(F)); FGhom_images := ShallowCopy(GeneratorsOfGroup(G)); Append(orig_gens, List(orig_gens, x -> x^-1)); Append(orig_fgens, List(orig_fgens, x -> x^-1)); gens := []; fgens := []; rels := []; relsF := []; all_relsF := []; # select pairwise different generators for i in [1..Length(orig_gens)] do if not IsOne(orig_gens[i]) then new_gen := true; for j in [1..i-1] do if orig_gens[i] = orig_gens[j] then new_gen := false; if IsNewRel(orig_fgens[i]^-1*orig_fgens[j]) then if not IsIdenticalObj(orig_gens[i], orig_gens[j]) then Add(rels, orig_gens[i]^-1*orig_gens[j]); Print( orig_gens[i]^-1*orig_gens[j], "\n"); fi; Add(relsF, orig_fgens[i]^-1*orig_fgens[j]); Append(all_relsF, CyclicConjugates(orig_fgens[i]^-1*orig_fgens[j])); if i > ngens and j <= ngens then # hom_images[i-ngens] := orig_gens[j+ngens]; # hom_images[j] := orig_gens[i]; FFhom_images[i-ngens] := orig_fgens[j+ngens]; FFhom_images[j] := orig_fgens[i]; fi; fi; break; fi; od; if new_gen then Add(gens, orig_gens[i]); Add(fgens, orig_fgens[i]); if i <= ngens then FGhom_images[i] := orig_gens[i]; fi; fi; else if not IsIdenticalObj(orig_gens[i], One(orig_gens[i])) then Add(rels, orig_gens[i]); Print( orig_gens[i], "\n"); fi; # # Add(relsF, orig_fgens[i]); fi; od; # inv_gens := []; # for i in [1..Length(gens)] do # for j in [1..i] do # if IsOne(gens[i]*gens[j]) then # inv_gens[i] := gens[j]; inv_gens[j] := gens[i]; # fi; # od; # od; # Print("gens = ", gens, "\n"); # Print("inv_gens = ", inv_gens, "\n"); FFhom := GroupHomomorphismByImagesNC(F, F, GeneratorsOfGroup(F), FFhom_images); FGhom := GroupHomomorphismByImagesNC(F, G, GeneratorsOfGroup(F), FGhom_images); # Print("hom = ", hom, "\n"); ElList := [One(G)]; # ElList_inv := [One(G)]; ElListF := [One(F)]; Append(ElList, ShallowCopy(gens)); # Append(ElList_inv, ShallowCopy(inv_gens)); Append(ElListF, ShallowCopy(fgens)); GrList := [1, Length(gens)+1]; len := 1; while GrList[len] <> GrList[len+1] and len < max_len and Length(rels) < num_of_rels do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for j in [1..Length(gens)] do f := ElListF[i]*fgens[j]; if Length(f) > Length(ElListF[i]) then g := ElList[i]*gens[j]; New := true; if len = 1 then k := 1; else k := GrList[len-1]; fi; while New and k <= oldgr do if g = ElList[k] then New := false; fi; k := k+1; od; if New then Add(ElList, g); # Add(ElList_inv, inv_gens[j]*ElList_inv[i]); Add(ElListF, f); else new_rel := true; rel := CyclicallyReducedWord(Image(FFhom, f^-1)*ElListF[k-1]); if Length(rel) < Length(f)+Length(ElListF[k-1]) then new_rel := false; fi; if new_rel and IsNewRel(rel) and IsNewRel(Image(FFhom, rel^-1)) then # Add(rels, inv_gens[j]*ElList_inv[i]*ElList[k-1]); cur_rel := Image(FGhom, rel); Add(rels, cur_rel); Add(relsF, rel); Print( cur_rel, "\n"); Append(all_relsF, CyclicConjugates(rel)); fi; fi; fi; od; od; Add(GrList, Length(ElList)); Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); len := len+1; od; if GrList[len] = GrList[len+1] then SetSize(G, GrList[len]); fi; return rels; end); InstallMethod(FindGroupRelations, "for [IsGroup, IsCyclotomic]", true, [IsGroup, IsCyclotomic], function(G, max_len) return FindGroupRelations(G, max_len, infinity); end); InstallMethod(FindGroupRelations, "for [IsGroup]", [IsGroup], function(G) return FindGroupRelations(G, infinity, infinity); end); InstallMethod(FindGroupRelations, "for [IsList, IsCyclotomic, IsCyclotomic]", true, [IsList, IsCyclotomic, IsCyclotomic], function(subs_words, max_len, num_of_rels) return FindGroupRelations(GroupWithGenerators(subs_words), max_len, infinity); end); InstallMethod(FindGroupRelations, "for [IsList, IsCyclotomic]", true, [IsList, IsCyclotomic], function(subs_words, max_len) return FindGroupRelations(subs_words, max_len, infinity); end); InstallMethod(FindGroupRelations, "for [IsList]", [IsList], function(subs_words) return FindGroupRelations(subs_words, infinity, infinity); end); InstallMethod(FindGroupRelations, "for [IsList, IsList, IsCyclotomic, IsCyclotomic]", true, [IsList, IsList, IsCyclotomic, IsCyclotomic], function(subs_words, names, max_len, num_of_rels) local ElList, GrList, i, j, orig_gens, gen, gens, new_gen, g, len, oldgr, New, k, rel, F, relsF, ElListF, genf, f, fgens, all_relsF, rel1, new_rel, r, orig_fgens, \ IsNewRel, CyclicConjugates, ngens, FFhom_images, FFhom; IsNewRel := function(rel) local rel1, r; rel1 := rel; repeat for r in all_relsF do if PositionWord(rel1, Subword(r,1,Int(Length(r)/2)+1), 1) <> fail then return false; fi; od; rel1 := rel1^Subword(rel1, 1, 1); until rel1 = rel; return true; end; CyclicConjugates := function(rel) local rel1, conjs; rel1 := rel; conjs := []; repeat rel1 := rel1^Subword(rel1, 1, 1); Add(conjs, rel1); until rel1 = rel; return conjs; end; if Length(subs_words) <> Length(names) then Error("The number of names must coincide with the number of generators"); fi; orig_gens := ShallowCopy(subs_words); F := FreeGroup(names); orig_fgens := ShallowCopy(GeneratorsOfGroup(F)); ngens := Length(orig_gens); FFhom_images := ShallowCopy(GeneratorsOfGroup(F)); Append(orig_gens, List(orig_gens, x -> x^-1)); Append(orig_fgens, List(orig_fgens, x -> x^-1)); gens := []; fgens := []; relsF := []; all_relsF := []; # select pairwise different generators for i in [1..Length(orig_gens)] do if not IsOne(orig_gens[i]) then new_gen := true; for j in [1..i-1] do if orig_gens[i] = orig_gens[j] then new_gen := false; if IsNewRel(orig_fgens[i]^-1*orig_fgens[j]) then Add(relsF, orig_fgens[i]^-1*orig_fgens[j]); Print(orig_fgens[i]^-1*orig_fgens[j], "\n"); Append(all_relsF, CyclicConjugates(orig_fgens[i]^-1*orig_fgens[j])); if i > ngens and j <= ngens then FFhom_images[i-ngens] := orig_fgens[j+ngens]; FFhom_images[j] := orig_fgens[i]; fi; fi; break; fi; od; if new_gen then Add(gens, orig_gens[i]); Add(fgens, orig_fgens[i]); fi; else Add(relsF, orig_fgens[i]); Print(orig_fgens[i], "\n"); fi; od; FFhom := GroupHomomorphismByImagesNC(F, F, GeneratorsOfGroup(F), FFhom_images); ElList := [One(subs_words[1])]; ElListF := [One(F)]; Append(ElList, ShallowCopy(gens)); Append(ElListF, ShallowCopy(fgens)); GrList := [1, Length(gens)+1]; len := 1; while GrList[len] <> GrList[len+1] and len < max_len and Length(relsF) < num_of_rels do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for j in [1..Length(gens)] do f := ElListF[i]*fgens[j]; if Length(f) > Length(ElListF[i]) then g := ElList[i]*gens[j]; New := true; if len = 1 then k := 1; else k := GrList[len-1]; fi; while New and k <= oldgr do if g = ElList[k] then New := false; fi; k := k+1; od; if New then Add(ElList, g); Add(ElListF, f); else new_rel := true; rel := CyclicallyReducedWord(Image(FFhom, f^-1)*ElListF[k-1]); if Length(rel) < Length(f)+Length(ElListF[k-1]) then new_rel := false; fi; if new_rel and IsNewRel(rel) and IsNewRel(Image(FFhom, rel^-1)) then Add(relsF, rel); Print( rel, "\n"); Append(all_relsF, CyclicConjugates(rel)); fi; fi; fi; od; od; Add(GrList, Length(ElList)); Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); len := len+1; od; return relsF; end); InstallMethod(FindGroupRelations, "for [IsList, IsList, IsCyclotomic]", true, [IsList, IsList, IsCyclotomic], function(subs_words, names, max_len) return FindGroupRelations(subs_words, names, max_len, infinity); end); InstallMethod(FindGroupRelations, "for [IsList, IsList]", true, [IsList, IsList], function(subs_words, names) return FindGroupRelations(subs_words, names, infinity, infinity); end); # InstallMethod(FindSemigroupRelations, "for [IsAutomSemigroup, IsCyclotomic, IsCyclotomic]", true, # [IsAutomSemigroup, IsCyclotomic, IsCyclotomic], # function(G, max_len, num_of_rels) # local ElList, GrList, i, j, orig_gens, gen, gens, new_gen, g, len, oldgr, New, k, has_one, rels, rel; # # orig_gens := ShallowCopy(GeneratorsOfSemigroup(G)); # # gens := []; # rels := []; # has_one := false; # # # select pairwise different generators # for i in [1..Length(orig_gens)] do # if not IsOne(orig_gens[i]) then # new_gen := true; # for j in [1..i-1] do # if orig_gens[i] = orig_gens[j] then # new_gen := false; # if not Word(orig_gens[i]) = Word(orig_gens[j]) then # Add(rels, [orig_gens[i], orig_gens[j]]); # fi; # break; # fi; # od; # if new_gen then Add(gens, orig_gens[i]); fi; # else # if not Word(orig_gens[i]) = Word(One(orig_gens[i])) then # Add(rels, [orig_gens[i], One(orig_gens[i])]); # fi; # has_one := true; # fi; # od; # # if has_one then # ElList := [One(G)]; # GrList := [1]; # else # ElList := []; # GrList := [0]; # fi; # # Append(ElList, ShallowCopy(gens)); # Add(GrList, Length(gens)+GrList[1]); # len := 1; # # while GrList[len] <> GrList[len+1] and len < max_len and Length(rels) < num_of_rels do # for i in [GrList[len]+1..GrList[len+1]] do # oldgr := Length(ElList); # for gen in gens do # g := ElList[i]*gen; # New := true; # # # Print("g = ", g, "\n"); # # Print("rels = ", rels, "\n"); # # # If g includes a longer part of some relation it can not represent # # neither a new element, nor be involved in a new relation # # for rel in rels do # if PositionWord(Word(g), Word(rel[1]), 1) <> fail then New := false; fi; # od; # # # Print("New el/rel:", New, "\n"); # if New then # # k := 0; # while New and k < Length(ElList) do # k := k+1; # if g = ElList[k] then # New := false; # fi; # od; # # Print("New el:", New, "\n"); # if New then # Add(ElList, g); # else # if not Word(g) = Word(ElList[k]) then # Add(rels, [g, ElList[k]]); # Print( g, " = ", ElList[k], "\n"); # fi; # fi; # fi; # # Print("\n\n\n"); # od; # od; # Add(GrList, Length(ElList)); # Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); # len := len+1; # od; # if GrList[len] = GrList[len+1] then # SetSize(G, GrList[len]); # fi; # return rels; # end); # # # # InstallMethod(FindSemigroupRelations, "for [IsAutomSemigroup, IsCyclotomic]", true, # [IsAutomSemigroup, IsCyclotomic], # function(G, max_len) # return FindSemigroupRelations(G, max_len, infinity); # end); # # # InstallMethod(FindSemigroupRelations, "for [IsAutomSemigroup]", # [IsAutomSemigroup], # function(G) # return FindSemigroupRelations(G, infinity, infinity); # end); InstallMethod(FindSemigroupRelations, "for [IsSemigroup, IsCyclotomic, IsCyclotomic]", true, [IsSemigroup, IsCyclotomic, IsCyclotomic], function(G, max_len, num_of_rels) local ElList, GrList, i, j, orig_gens, gen, gens, new_gen, g, len, oldgr, New, k, has_one, rels, rel, F, relsF, ElListF, genf, f; orig_gens := ShallowCopy(GeneratorsOfSemigroup(G)); gens := []; rels := []; relsF := []; has_one := false; # select pairwise different generators for i in [1..Length(orig_gens)] do if not IsOne(orig_gens[i]) then new_gen := true; for j in [1..i-1] do if orig_gens[i] = orig_gens[j] then new_gen := false; if not IsIdenticalObj(orig_gens[i], orig_gens[j]) then Add(rels, [orig_gens[i], orig_gens[j]]); fi; break; fi; od; if new_gen then Add(gens, orig_gens[i]); fi; else if not IsIdenticalObj(orig_gens[i], One(orig_gens[i])) then Add(rels, [orig_gens[i], One(orig_gens[i])]); fi; has_one := true; fi; od; F := FreeGroup(Length(gens)); if has_one then ElList := [One(G)]; ElListF := [One(F)]; GrList := [1]; else ElList := []; ElListF := []; GrList := [0]; fi; Append(ElList, ShallowCopy(gens)); Append(ElListF, GeneratorsOfGroup(F)); Add(GrList, Length(gens)+GrList[1]); len := 1; while GrList[len] <> GrList[len+1] and len < max_len and Length(rels) < num_of_rels do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for j in [1..Length(gens)] do gen := gens[j]; genf := GeneratorsOfGroup(F)[j]; g := ElList[i]*gen; f := ElListF[i]*genf; New := true; # If g includes a longer part of some relation it can not represent # neither a new element, nor be involved in a new relation for rel in relsF do if PositionSublist(LetterRepAssocWord(f), LetterRepAssocWord(rel[1]) ) <> fail then New := false; fi; od; # Print("New = ", New, "\n\n"); if New then k := 0; while New and k < Length(ElList) do k := k+1; if g = ElList[k] then New := false; fi; od; if New then Add(ElList, g); Add(ElListF, f); else Add(rels, [g, ElList[k]]); Add(relsF, [f, ElListF[k]]); # if Length(AssocW(v)) > 0 then Print(g, " = ", ElList[k], "\n"); # fi; fi; fi; od; od; Add(GrList, Length(ElList)); Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); len := len+1; od; if GrList[len] = GrList[len+1] then SetSize(G, GrList[len]); fi; return rels; end); InstallMethod(FindSemigroupRelations, "for [IsSemigroup, IsCyclotomic]", true, [IsSemigroup, IsCyclotomic], function(G, max_len) return FindSemigroupRelations(G, max_len, infinity); end); InstallMethod(FindSemigroupRelations, "for [IsSemigroup]", [IsSemigroup], function(G) return FindSemigroupRelations(G, infinity, infinity); end); InstallMethod(FindSemigroupRelations, "for [IsList, IsCyclotomic, IsCyclotomic]", true, [IsList, IsCyclotomic, IsCyclotomic], function(subs_words, max_len, num_of_rels) return FindSemigroupRelations(SemigroupByGenerators(subs_words), max_len, num_of_rels); end); InstallMethod(FindSemigroupRelations, "for [IsList, IsCyclotomic]", true, [IsList, IsCyclotomic], function(subs_words, max_len) return FindSemigroupRelations(subs_words, max_len, infinity); end); InstallMethod(FindSemigroupRelations, "for [IsList]", [IsList], function(subs_words) return FindSemigroupRelations(subs_words, infinity, infinity); end); InstallMethod(FindSemigroupRelations, "for [IsList, IsList, IsCyclotomic, IsCyclotomic]", true, [IsList, IsList, IsCyclotomic, IsCyclotomic], function(subs_words, names, max_len, num_of_rels) local ElList, GrList, i, j, orig_gens, orig_fgens, gen, gens, fgens, new_gen, g, len, oldgr, New, k, has_one, rel, F, relsF, ElListF, genf, f; if Length(subs_words) <> Length(names) then Error("The number of names must coincide with the number of generators"); fi; F := FreeGroup(names); orig_fgens := GeneratorsOfGroup(F); orig_gens := ShallowCopy(subs_words); gens := []; fgens := []; relsF := []; has_one := false; # select pairwise different generators for i in [1..Length(orig_gens)] do if not IsOne(orig_gens[i]) then new_gen := true; for j in [1..i-1] do if orig_gens[i] = orig_gens[j] then new_gen := false; Add(relsF, [orig_fgens[i], orig_fgens[j]]); Print( orig_fgens[i], " = ", orig_fgens[j], "\n"); break; fi; od; if new_gen then Add(gens, orig_gens[i]); Add(fgens, orig_fgens[i]); fi; else Add(relsF, [orig_fgens[i], One(orig_fgens[i])]); Print( orig_fgens[i], " = ", One(F), "\n"); has_one := true; fi; od; if has_one then ElList := [One(gens[1])]; ElListF := [One(F)]; GrList := [1]; else ElList := []; ElListF := []; GrList := [0]; fi; Append(ElList, ShallowCopy(gens)); Append(ElListF, fgens); Add(GrList, Length(gens)+GrList[1]); len := 1; while GrList[len] <> GrList[len+1] and len < max_len and Length(relsF) < num_of_rels do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for j in [1..Length(gens)] do gen := gens[j]; genf := fgens[j]; g := ElList[i]*gen; f := ElListF[i]*genf; New := true; # If g includes a longer part of some relation it can not represent # neither a new element, nor be involved in a new relation for rel in relsF do if PositionSublist(LetterRepAssocWord(f), LetterRepAssocWord(rel[1]) ) <> fail then New := false; fi; od; if New then k := 0; while New and k < Length(ElList) do k := k+1; if g = ElList[k] then New := false; fi; od; if New then Add(ElList, g); Add(ElListF, f); else Add(relsF, [f, ElListF[k]]); Print( f, " = ", ElListF[k], "\n"); fi; fi; od; od; Add(GrList, Length(ElList)); Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); len := len+1; od; return relsF; end); InstallMethod(FindSemigroupRelations, "for [IsList, IsList, IsCyclotomic]", true, [IsList, IsList, IsCyclotomic], function(subs_words, names, max_len) return FindSemigroupRelations(subs_words, names, max_len, infinity); end); InstallMethod(FindSemigroupRelations, "for [IsList, IsList]", true, [IsList, IsList], function(subs_words, names) return FindSemigroupRelations(subs_words, names, infinity, infinity); end); InstallMethod(OrderUsingSections, "for [IsAutom, IsCyclotomic]", true, [IsAutom, IsCyclotomic], function(a, max_depth) local OrderUsingSections_LOCAL, cur_list, F, degs, vertex, AreConjugateUsingSmallRels, gens_ord2, CyclicallyReduce, res; CyclicallyReduce := function(w) local i, j, wtmp, reduced; for i in [1..Length(w)] do if -w[i] in gens_ord2 then w[i] := -w[i]; fi; od; repeat reduced := true; j := 1; while reduced and j < Length(w) do if w[j] = -w[j+1] or (w[j] = w[j+1] and w[j] in gens_ord2) then reduced := false; wtmp := ShallowCopy(w{[1..j-1]}); Append(wtmp, w{[j+2..Length(w)]}); w := wtmp; fi; j := j+1; od; until reduced; repeat if Length(w) < 2 then return w; fi; reduced := true; if w[1] = -w[Length(w)] or (w[1] = w[Length(w)] and w[1] in gens_ord2) then w := w{[2..Length(w)-1]}; reduced := false; fi; until reduced; return w; end; AreConjugateUsingSmallRels := function(g, h) local i, g_list, h_list, long_cycle, l; g_list := CyclicallyReduce(LetterRepAssocWord(g)); h_list := CyclicallyReduce(LetterRepAssocWord(h)); if Length(g_list) <> Length(h_list) then return false; fi; l := [2..Length(g_list)]; Add(l, 1); long_cycle := PermList(l); for i in [0..Length(g_list)-1] do if h_list = Permuted(g_list, long_cycle^i) then return true; fi; od; return false; end; OrderUsingSections_LOCAL := function(g) local i, el, orb, Orbs, res, st, reduced_word, loc_order; # Print("vertex=",vertex,"\n"); # Print("g=",g,"\n"); if IsOne(g) then return 1; fi; if IsActingOnBinaryTree(g) and not HasContainsSphericallyTransitiveElement(GroupOfAutomFamily(FamilyObj(g))) or (HasContainsSphericallyTransitiveElement(GroupOfAutomFamily(FamilyObj(g))) and ContainsSphericallyTransitiveElement(GroupOfAutomFamily(FamilyObj(g)))) then if IsSphericallyTransitive(g) then Info(InfoAutomGrp, 3, g!.word, " acts transitively on levels and is obtained from (", a!.word, ")^", Product(degs{[1..Length(degs)]}), "\n by taking sections and cyclic reductions at vertex ", vertex); return infinity; fi; fi; for i in [1..Length(cur_list)] do el := cur_list[i]; if (AreConjugateUsingSmallRels(g!.word, el!.word) or AreConjugateUsingSmallRels((g!.word)^(-1), el!.word)) then if Product(degs{[i..Length(degs)]}) > 1 then if i > 1 then Info(InfoAutomGrp, 3, el!.word, " is obtained from (", a!.word, ")^", Product(degs{[1..i-1]}), "\n by taking sections and cyclic reductions at vertex ", vertex{[1..i-1]}); fi; Info(InfoAutomGrp, 3, g!.word, " is obtained from (", el!.word, ")^", Product(degs{[i..Length(degs)]}), "\n by taking sections and cyclic reductions at vertex ", vertex{[i..Length(degs)]}); SetIsFinite(GroupOfAutomFamily(FamilyObj(a)), false); return infinity; else # Info(InfoAutomGrp, 3, "The group <G> might not be contracting, ", g, " has itself as a section."); return 1; fi; fi; od; if Length(cur_list) >= max_depth then return fail; fi; Add(cur_list, g); Orbs := OrbitsPerms([g!.perm], [1..g!.deg]); loc_order := 1; for orb in Orbs do Add(degs, Length(orb)); Add(vertex, orb[1]); # res := OrderUsingSections_LOCAL(Autom(CyclicallyReducedWord(Section(g^Length(orb), orb[1])!.word), FamilyObj(g))); # Print(g^Length(orb), "\n"); st := Section(g^Length(orb), orb[1]); reduced_word := AssocWordByLetterRep(FamilyObj(st!.word), CyclicallyReduce(LetterRepAssocWord(st!.word))); # Print(st!.word, " at ", vertex, "\n"); res := OrderUsingSections_LOCAL(Autom(reduced_word, FamilyObj(g))); if res = infinity then return res; elif res=fail then loc_order:=fail; fi; if loc_order<>fail then loc_order := Lcm(loc_order, res*Length(orb)); fi; Remove(degs); Remove(vertex); od; Remove(cur_list); return loc_order; end; F := FamilyObj(a)!.freegroup; gens_ord2 := GeneratorsOfOrderTwo(FamilyObj(a)); cur_list := []; # degs traces at what positions we raise to what power degs := []; vertex := []; res := OrderUsingSections_LOCAL(a); if res = infinity then SetIsFinite(GroupOfAutomFamily(FamilyObj(a)), false); SetOrder(a, infinity); fi; return res; end); InstallMethod(OrderUsingSections, "for [IsAutom]", true, [IsAutom], function(a) return OrderUsingSections(a, infinity); end); InstallGlobalFunction(AG_SuspiciousForNoncontraction, function(arg) local AG_SuspiciousForNoncontraction_LOCAL, cur_list, F, vertex, print_info, a; AG_SuspiciousForNoncontraction_LOCAL := function(g) local i, res; if IsOne(g) or g!.perm <> () then return false; fi; if (g!.word in cur_list) or (g!.word^(-1) in cur_list) then if g = a or g = a^-1 then if print_info then Info(InfoAutomGrp, 3, a!.word, " has ", g!.word, " as a section at vertex ", vertex); else Info(InfoAutomGrp, 5, a!.word, " has ", g!.word, " as a section at vertex ", vertex); fi; return true; else return false; fi; fi; Add(cur_list, g!.word); for i in [1..FamilyObj(a)!.deg] do Add(vertex, i); res := AG_SuspiciousForNoncontraction_LOCAL(Section(g, i)); if res then return true; fi; Unbind(vertex[Length(vertex)]); od; return false; end; a := arg[1]; print_info := false; if Length(arg) > 1 then print_info := arg[2]; fi; if Length(arg) > 2 then Error("invalid arguments for IsNoncontracting"); fi; F := FamilyObj(a)!.freegroup; cur_list := []; # degs traces at what positions we raise to what power vertex := []; return AG_SuspiciousForNoncontraction_LOCAL(a); end); InstallMethod(FindElement, "for [IsAutomGroup, IsFunction, IsObject, IsCyclotomic]", true, [IsAutomGroup, IsFunction, IsObject, IsCyclotomic], function(G, func, val, n) local ElList, GrList, i, j, orig_gens, gen, gens, new_gen, g, len, viewed, oldgr, New, k; if func(One(G)) = val then return One(G); fi; # produce a symmetric generating set orig_gens := ShallowCopy(GeneratorsOfGroup(G)); Append(orig_gens, List(orig_gens, x -> x^-1)); gens := []; # select pairwise different generators for i in [1..Length(orig_gens)] do if not IsOne(orig_gens[i]) then new_gen := true; for j in [1..i-1] do if orig_gens[i] = orig_gens[j] then new_gen := false; fi; od; if new_gen then Add(gens, orig_gens[i]); fi; fi; od; for g in gens do if func(g) = val then return g; fi; od; ElList := [One(G)]; Append(ElList, ShallowCopy(gens)); GrList := [1, Length(gens)+1]; len := 1; while len < n and GrList[len] <> GrList[len+1] do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for gen in gens do g := ElList[i]*gen; New := true; if len = 1 then k := 1; else k := GrList[len-1]; fi; while New and k <= oldgr do if g = ElList[k] then New := false; fi; k := k+1; od; if New then if func(g) = val then return g; fi; Add(ElList, g); fi; od; od; Add(GrList, Length(ElList)); Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); len := len+1; od; if GrList[len] = GrList[len+1] then SetSize(G, GrList[len]); fi; return fail; end); InstallMethod(FindElements, "for [IsAutomGroup, IsFunction, IsObject, IsCyclotomic]", true, [IsAutomGroup, IsFunction, IsObject, IsCyclotomic], function(G, func, val, n) local ElList, GrList, i, j, orig_gens, gen, gens, new_gen, g, len, viewed, oldgr, New, k, cur_els; # produce a symmetric generating set orig_gens := ShallowCopy(GeneratorsOfGroup(G)); Append(orig_gens, List(orig_gens, x -> x^-1)); gens := []; cur_els := []; # select pairwise different generators for i in [1..Length(orig_gens)] do if not IsOne(orig_gens[i]) then new_gen := true; for j in [1..i-1] do if orig_gens[i] = orig_gens[j] then new_gen := false; fi; od; if new_gen then Add(gens, orig_gens[i]); fi; fi; od; if func(One(G)) = val then Add(cur_els, One(G)); fi; for g in gens do if func(g) = val then Add(cur_els, g); fi; od; ElList := [One(G)]; Append(ElList, ShallowCopy(gens)); GrList := [1, Length(gens)+1]; len := 1; while len < n and GrList[len] <> GrList[len+1] do for i in [GrList[len]+1..GrList[len+1]] do oldgr := Length(ElList); for gen in gens do g := ElList[i]*gen; New := true; if len = 1 then k := 1; else k := GrList[len-1]; fi; while New and k <= oldgr do if g = ElList[k] then New := false; fi; k := k+1; od; if New then if func(g) = val then Add(cur_els, g); Info(InfoAutomGrp, 3, g); fi; Add(ElList, g); fi; od; od; Add(GrList, Length(ElList)); Info(InfoAutomGrp, 3, "There are ", Length(ElList), " elements of length up to ", len+1); len := len+1; od; if GrList[len] = GrList[len+1] then SetSize(G, GrList[len]); fi; return cur_els; end); InstallMethod(FindElement, "for [IsTreeHomomorphismSemigroup, IsFunction, IsObject, IsCyclotomic]", true, [IsTreeHomomorphismSemigroup, IsFunction, IsObject, IsCyclotomic], function(G, func, val, max_len) local iter, g; iter := Iterator(G, max_len); while not IsDoneIterator(iter) do g := NextIterator(iter); if func(g) = val then return g; fi; od; return fail; end); InstallMethod(FindElements, "for [IsTreeHomomorphismSemigroup, IsFunction, IsObject, IsCyclotomic]", true, [IsTreeHomomorphismSemigroup, IsFunction, IsObject, IsCyclotomic], function(G, func, val, max_len) local iter, g, l; iter := Iterator(G, max_len); l := []; while not IsDoneIterator(iter) do g := NextIterator(iter); if func(g) = val then Add(l, g); fi; od; return l; end); InstallMethod(FindElementOfInfiniteOrder, "for [IsTreeAutomorphismGroup, IsCyclotomic, IsCyclotomic]", true, [IsTreeHomomorphismSemigroup, IsCyclotomic, IsCyclotomic], function(G, n, depth) local CheckOrder, res; if HasIsFinite(G) and IsFinite(G) then return fail; fi; CheckOrder := function(g) return OrderUsingSections(g, depth); end; res := FindElement(G, CheckOrder, infinity, n); if res <> fail then SetIsFinite(G, false); fi; return res; end); InstallMethod(FindElementsOfInfiniteOrder, "for [IsAutomGroup, IsCyclotomic, IsCyclotomic]", true, [IsAutomGroup, IsCyclotomic, IsCyclotomic], function(G, n, depth) local CheckOrder, res; if HasIsFinite(G) and IsFinite(G) then return []; fi; CheckOrder := function(g) return OrderUsingSections(g, depth); end; res := FindElements(G, CheckOrder, infinity, n); if res <> [] then SetIsFinite(G, false); fi; return res; end); InstallGlobalFunction(IsNoncontracting, function(arg) local IsNoncontrElement, res, G, n, depth; IsNoncontrElement := function(g) if AG_SuspiciousForNoncontraction(g) and OrderUsingSections( g, depth ) = infinity then if InfoLevel(InfoAutomGrp) > 2 then AG_SuspiciousForNoncontraction(g, true); fi; return true; fi; return false; end; G := arg[1]; n := infinity; depth := 10; if Length(arg) > 1 then n := arg[2]; fi; if Length(arg) > 2 then depth := arg[3]; fi; if Length(arg) > 3 then Error("invalid arguments for IsNoncontracting"); fi; if HasIsContracting(G) then return not IsContracting(G); fi; res := FindElement(G, IsNoncontrElement, true, n); if res <> fail then SetIsFinite(G, false); SetIsContracting(G, false); return true; fi; return fail; end); InstallMethod(IsGeneratedByAutomatonOfPolynomialGrowth, "for [IsAutomatonGroup]", true, [IsAutomatonGroup], function(G) local i, d, ver, nstates, cycles, cycle_of_vertex, IsNewCycle, known_vertices, aut_list, HasPolyGrowth, cycle_order, next_cycles, cur_cycles, cur_path, cycles_of_level, lev; IsNewCycle := function(C) local i, l, cur_cycle, long_cycle; l := [2..Length(C)]; Add(l, 1); long_cycle := PermList(l); for cur_cycle in cycles do if Intersection(cur_cycle, C) <> [] then # if Length(C) <> Length(cur_cycle) then return fail; fi; # for i in [0..Length(C)-1] do # if cur_cycle = Permuted(C, long_cycle^i) then return false; fi; # od; Info(InfoAutomGrp, 5, "cycle1 = ", cur_cycle, "cycle2 = ", C); return fail; fi; od; return true; end; # Example: # cycles = [[1, 2, 4], [3, 5, 6], [7]] # cur_cycles = [1, 3] (the first and the third cycles) # cycle_order = [[2, 3], [3], []] (means 1 -> 2 -> 3, 1 -> 3) HasPolyGrowth := function(v) local i, v_next, is_new, C, ver; # Print("v = ", v, "\n"); Add(cur_path, v); for i in [1..d] do v_next := aut_list[v][i]; if not (v_next in known_vertices or v_next = 2*nstates+1) then if v_next in cur_path then C := cur_path{[Position(cur_path, v_next)..Length(cur_path)]}; is_new := IsNewCycle(C); if is_new = fail then return false; else Add(cycles, C); Add(cycle_order, []); for ver in C do # Print("next_cycles = ", next_cycles); UniteSet(cycle_order[Length(cycles)], next_cycles[ver]); cycle_of_vertex[ver] := Length(cycles); next_cycles[ver] := [Length(cycles)]; od; fi; else if not HasPolyGrowth(v_next) then return false; fi; if cycle_of_vertex[v] = 0 then UniteSet(next_cycles[v], next_cycles[v_next]); elif cycle_of_vertex[v] <> cycle_of_vertex[v_next] then UniteSet(cycle_order[cycle_of_vertex[v]], next_cycles[v_next]); Info(InfoAutomGrp, 5, "v = ", v, "; v_next = ", v_next); Info(InfoAutomGrp, 5, "cycle_order (local) = ", cycle_order); fi; fi; elif v_next in known_vertices then if cycle_of_vertex[v] = 0 then UniteSet(next_cycles[v], next_cycles[v_next]); elif cycle_of_vertex[v] = cycle_of_vertex[v_next] then return false; else UniteSet(cycle_order[cycle_of_vertex[v]], next_cycles[v_next]); fi; fi; od; Remove(cur_path); Add(known_vertices, v); return true; end; nstates := UnderlyingAutomFamily(G)!.numstates; aut_list := AutomatonList(G); d := UnderlyingAutomFamily(G)!.deg; cycles := []; cycle_of_vertex := List([1..nstates], x -> 0); #if vertex i is in cycle j, then cycle_of_vertex[i] = j next_cycles := List([1..nstates], x -> []); #if vertex i is not in a cycle, next_cycles[i] stores the list of cycles, that can be reached immediately (with no cycles in between) from this vertex known_vertices := []; cur_path := []; cycle_order := []; while Length(known_vertices) < nstates do ver := Difference([1..nstates], known_vertices)[1]; if not HasPolyGrowth(ver) then SetIsGeneratedByBoundedAutomaton(G, false); return false; fi; od; # Now we find the longest chain in the poset of cycles cycles_of_level := [[]]; for i in [1..Length(cycles)] do if cycle_order[i] = [] then Add(cycles_of_level[1], i); fi; od; lev := 1; while cycles_of_level[Length(cycles_of_level)] <> [] do Add(cycles_of_level, []); for i in [1..Length(cycles)] do if Intersection(cycles_of_level[lev], cycle_order[i]) <> [] then Add(cycles_of_level[lev+1], i); fi; od; lev := lev+1; od; if lev = 2 then SetIsGeneratedByBoundedAutomaton(G, true); SetIsAmenable(G, true); elif lev = 1 then SetIsGeneratedByBoundedAutomaton(G, true); SetIsFinite(G, true); else SetIsGeneratedByBoundedAutomaton(G, false); fi; SetPolynomialDegreeOfGrowthOfUnderlyingAutomaton(G, lev-2); Info(InfoAutomGrp, 5, "Cycles = ", cycles); Info(InfoAutomGrp, 5, "cycle_order = ", cycle_order); Info(InfoAutomGrp, 5, "next_cycles = ", next_cycles); return true; end); InstallMethod(IsGeneratedByBoundedAutomaton, "for [IsAutomatonGroup]", true, [IsAutomatonGroup], function(G) local res; res := IsGeneratedByAutomatonOfPolynomialGrowth(G); return IsGeneratedByBoundedAutomaton(G); end); InstallMethod(PolynomialDegreeOfGrowthOfUnderlyingAutomaton, "for [IsAutomatonGroup]", true, [IsAutomatonGroup], function(G) local res; res := IsGeneratedByAutomatonOfPolynomialGrowth(G); if not res then Print("Error: the automaton generating <G> has exponenetial growth\n"); return fail; fi; return PolynomialDegreeOfGrowthOfUnderlyingAutomaton(G); end); InstallMethod(IsAmenable, "for [IsAutomGroup]", true, [IsAutomGroup], function(G) if HasIsFinite(G) and IsFinite(G) then return true; fi; if IsGeneratedByBoundedAutomaton(GroupOfAutomFamily(G)) then return true; fi; if IsAutomatonGroup(G) and IsAbelian(StabilizerOfLevel(G, 2)) then return true; fi; if IsAutomatonGroup(G) and IsOfSubexponentialGrowth(G)=true then return true; fi; TryNextMethod(); end); InstallMethod(IsOfSubexponentialGrowth, "for [IsAutomatonGroup, IsCyclotomic, IsCyclotomic]", true, [IsAutomatonGroup, IsCyclotomic, IsCyclotomic], function(G, len, depth) local iter, res, g, cur_length; if (HasIsFinite(G) and IsFinite(G)) or IsAbelian(G) then return true; fi; iter := Iterator(G, len); cur_length := 1; res := false; while not IsDoneIterator(iter) do g := NextIterator(iter); if Length(Word(g)) > cur_length then if res then return true; SetIsAmenable(G, true); fi; res := true; cur_length := cur_length + 1; fi; if res and cur_length <= Sum( List(Sections(g, depth), x -> Length(Word(x))) ) then Info(InfoAutomGrp, 3, g, " has sections ", Sections(g, depth)); res := false; fi; od; if res then return true; fi; # if iterator has enumerated all (finitely many) elements of <G> if HasIsFinite(G) and IsFinite(G) then return true; fi; if IsAbelian(StabilizerOfLevel(G, 2)) then return true; fi; return fail; end); InstallMethod(IsOfSubexponentialGrowth, "for [IsSelfSimilarGroup, IsCyclotomic, IsCyclotomic]", true, [IsSelfSimilarGroup, IsCyclotomic, IsCyclotomic], function(G, len, depth) local iter, res, g, cur_length, F; if (HasIsFinite(G) and IsFinite(G)) or IsAbelian(G) then return true; fi; F := UnderlyingFreeGroup(G); iter := Iterator(F); cur_length := 1; res := false; repeat g := NextIterator(iter); if Length(g) > cur_length then if res then return true; SetIsAmenable(G, true); fi; res := true; cur_length := cur_length + 1; fi; if res and cur_length <= Sum( List(Sections(SelfSim(g,One(G)), depth), x -> Length(Word(x))) ) then Info(InfoAutomGrp, 3, g, " has sections ", Sections( SelfSim(g,One(G)), depth)); res := false; fi; until Length(g)>len; # if iterator has enumerated all (finitely many) elements of <G> if HasIsFinite(G) and IsFinite(G) then return true; fi; if IsAbelian(StabilizerOfLevel(G, 2)) then return true; fi; return fail; end); InstallMethod(IsOfSubexponentialGrowth, "for [IsTreeAutomorphismGroup and IsSelfSimilar]", true, [IsTreeAutomorphismGroup and IsSelfSimilar], function(G) return IsOfSubexponentialGrowth(G, 10, 6); end); InstallGlobalFunction(AG_GroupHomomorphismByImagesNC, function(G, H, gens_G, gens_H) local F, gens_in_freegrp, pi, pi_bar, hom_function, inv_hom_function; if Length(gens_G)<>Length(gens_H) then Error("Lengths of generating sets must coincide"); fi; F := FreeGroup(Length(gens_G)); gens_in_freegrp := List(gens_G, Word); # pi # F ------> G ----> H # --------------> # pi_bar pi := GroupHomomorphismByImages(F, Group(gens_in_freegrp), GeneratorsOfGroup(F), gens_in_freegrp); pi_bar := GroupHomomorphismByImages(F, H, GeneratorsOfGroup(F), gens_H); hom_function := function(g) return Image(pi_bar, PreImagesRepresentative(pi, g!.word)); end; if IsAutomGroup(G) then inv_hom_function := function(b) return Autom(Image(pi, PreImagesRepresentative(pi_bar, b)), UnderlyingAutomFamily(G)); end; elif IsSelfSimGroup(G) then inv_hom_function := function(b) return SelfSim(Image(pi, PreImagesRepresentative(pi_bar, b)), UnderlyingSelfSimFamily(G)); end; fi; return GroupHomomorphismByFunction(G, H, hom_function, inv_hom_function); end); #E