Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W tree.gd automgrp package Yevgen Muntyan #W Dmytro Savchuk ## automgrp v 1.3 ## #Y Copyright (C) 2003 - 2016 Yevgen Muntyan, Dmytro Savchuk ## ############################################################################# ## #C IsActingOnTree ## ## This is a category to which all objects acting on a tree belong: tree ## homomorphisms and groups and semigroups acting on trees. ## DeclareCategory("IsActingOnTree", IsObject); ############################################################################# ## #A SphericalIndex (<obj>) ## ## Returns "spherical index" of the tree on which <obj> acts. It is returned ## as a tuple of two lists [start, period], where start may be empty. ## DeclareAttribute("SphericalIndex", IsActingOnTree); InstallSubsetMaintenance(SphericalIndex, IsCollection, IsCollection); ############################################################################# ## #A TopDegreeOfTree (<obj>) ## ## Returns the degree of the tree on the first level, i.e. the number of vertices ## adjacent to the root vertex. ## DeclareAttribute("TopDegreeOfTree", IsActingOnTree); InstallSubsetMaintenance(TopDegreeOfTree, IsCollection, IsCollection); ############################################################################# ## #O DegreeOfLevel (<obj>, <lev>) ## ## Returns degree of the tree on the level <lev>. ## DeclareOperation("DegreeOfLevel", [IsActingOnTree, IsPosInt]); ############################################################################# ## #P IsActingOnRegularTree (<obj>) ## ## Tells whether <obj> is acting on a "regular" tree. ## DeclareProperty("IsActingOnRegularTree", IsActingOnTree); InstallSubsetMaintenance(IsActingOnRegularTree, IsCollection, IsCollection); ############################################################################# ## #P IsActingOnBinaryTree (<obj>) ## ## Tells whether <obj> is acting on a "binary" tree. ## DeclareProperty("IsActingOnBinaryTree", IsActingOnTree); InstallSubsetMaintenance(IsActingOnBinaryTree, IsCollection, IsCollection); InstallTrueMethod(IsActingOnRegularTree, IsActingOnBinaryTree); ############################################################################# ## #A DegreeOfTree (<obj>) ## ## This is a synonym for TopDegreeOfTree~("TopDegreeOfTree") for the case of ## a regular tree. It is an error to call this method for an object which acts ## on a non-regular tree. ## DeclareAttribute("DegreeOfTree", IsActingOnTree); InstallSubsetMaintenance(DegreeOfTree, IsCollection, IsCollection); ############################################################################# ## #O FixesVertex (<obj>, <v>) ## ## Returns whether <obj> fixes the vertex <v>. The vertex <v> may be given as a list, or as ## a positive integer, in which case it denotes the <v>-th vertex at the first ## level. ## DeclareOperation("FixesVertex", [IsActingOnTree, IsObject]); ############################################################################# ## #O FixesLevel (<obj>, <lev>) ## ## Returns whether <obj> fixes level <lev>, i.e. fixes every vertex at the level ## <lev>. ## DeclareOperation("FixesLevel", [IsActingOnTree, IsPosInt]); ############################################################################# ## #A AbelImage(<obj>) ## ## Returns image of <obj> in the canonical projection onto the abelianization of ## the full group of tree automorphisms, represented as a subgroup of the additive ## group of rational functions. ## DeclareAttribute("AbelImage", IsActingOnTree); #XXX it doesn't make sense for non-invertible automata, does it? #E