Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W treehom.gi automgrp package Yevgen Muntyan #W Dmytro Savchuk ## automgrp v 1.3 ## #Y Copyright (C) 2003 - 2016 Yevgen Muntyan, Dmytro Savchuk ## ############################################################################### ## #R IsTreeHomomorphismRep ## DeclareRepresentation("IsTreeHomomorphismRep", IsComponentObjectRep and IsAttributeStoringRep, ["states", "perm", "deg"]); ############################################################################### ## #R IsTreeHomomorphismFamilyRep ## DeclareRepresentation("IsTreeHomomorphismFamilyRep", IsComponentObjectRep and IsAttributeStoringRep, ["spher_index", "top_deg"]); ############################################################################### ## ## AG_CreatedTreeHomomorphismFamilies ## ## Contains all created TreeHomomorphismFamily objects; for each spherical ## index there exists one family, to which all objects created with TreeHomomorphism ## belong. ## BindGlobal("AG_CreatedTreeHomomorphismFamilies", rec(ind := [], fam := [])); ############################################################################### ## #M TreeHomomorphismFamily(<sph_ind>) ## InstallMethod(TreeHomomorphismFamily, [IsRecord], function(sph_ind) local fam, pos; sph_ind := AG_ReducedSphericalIndex(sph_ind); if sph_ind in AG_CreatedTreeHomomorphismFamilies.ind then for fam in AG_CreatedTreeHomomorphismFamilies.fam do if fam!.spher_index = sph_ind then return fam; fi; od; fi; fam := NewFamily(Concatenation("Automorphisms of ", sph_ind.start, ", (", sph_ind.period, ")-tree"), IsTreeHomomorphism, IsTreeHomomorphism, IsTreeHomomorphismFamily and IsTreeHomomorphismFamilyRep); fam!.spher_index := sph_ind; fam!.top_deg := AG_TopDegreeInSphericalIndex(sph_ind); AddSet(AG_CreatedTreeHomomorphismFamilies.ind, sph_ind); Add(AG_CreatedTreeHomomorphismFamilies.fam, fam); return fam; end); ############################################################################### ## #M TreeHomomorphism (<states>, <tr>) ## InstallMethod(TreeHomomorphism, [IsList and IsTreeHomomorphismCollection, IsObject], function(states, perm) local top_deg, bot_deg, ind, fam, a; if not IsPerm(perm) and not IsTransformation(perm) then Error("The second argument ",perm, "must be a permutation or transformation"); fi; if perm^-1<>fail and ForAll(states, IsTreeAutomorphism) then return TreeAutomorphism(states, AG_PermFromTransformation(perm)); fi; top_deg := Length(states); if IsPerm(perm) then if not IsOne(perm) and top_deg < Maximum(MovedPoints(perm)) then Error("The root permutation ", perm, " must move only points from 1 to the degree ", top_deg, " of the tree"); fi; else if not IsOne(perm) and top_deg < DegreeOfTransformation(perm) then Error("The root transformation ", perm, " must move only points from 1 to the degree ", top_deg, " of the tree"); fi; fi; bot_deg := DegreeOfTree(states[1]); ind := rec(start := [top_deg], period := [bot_deg]); fam := TreeHomomorphismFamily(ind); return Objectify(NewType(fam, IsTreeHomomorphism and IsTreeHomomorphismRep), rec(states := ShallowCopy(states), perm := perm, deg := top_deg)); end); ############################################################################### ## #M TreeHomomorphism (<states_list>, <perm>) ## InstallMethod(TreeHomomorphism, [IsList, IsTransformation], function(states, perm) local autom, nstates, s; autom := fail; for s in states do if IsTreeHomomorphism(s) then autom := s; break; elif not IsOne(s) then Error("Invalid state `", s, "'"); fi; od; if autom = fail then Error("Can't create an automaton with all trivial states ", "without information about the tree"); fi; nstates := List(states, function(s) if IsOne(s) then return One(autom); else return s; fi; end); return TreeHomomorphism(nstates, perm); end); ############################################################################### ## #M TreeHomomorphism(<state_1>, <state_2>, ..., <state_n>, <perm>) ## InstallMethod(TreeHomomorphism, [IsObject, IsObject, IsTransformation], function(a1, a2, perm) return TreeHomomorphism([a1, a2], perm); end); InstallMethod(TreeHomomorphism, [IsObject, IsObject, IsObject, IsTransformation], function(a1, a2, a3, perm) return TreeHomomorphism([a1, a2, a3], perm); end); InstallMethod(TreeHomomorphism, [IsObject, IsObject, IsObject, IsObject, IsTransformation], function(a1, a2, a3, a4, perm) return TreeHomomorphism([a1, a2, a3, a4], perm); end); InstallMethod(TreeHomomorphism, [IsObject, IsObject, IsPerm], function(a1, a2, perm) return TreeHomomorphism([a1, a2], perm); end); InstallMethod(TreeHomomorphism, [IsObject, IsObject, IsObject, IsPerm], function(a1, a2, a3, perm) return TreeHomomorphism([a1, a2, a3], perm); end); InstallMethod(TreeHomomorphism, [IsObject, IsObject, IsObject, IsObject, IsPerm], function(a1, a2, a3, a4, perm) return TreeHomomorphism([a1, a2, a3, a4], perm); end); ############################################################################### ## #M ViewObj(<a>) ## InstallMethod(ViewObj, [IsTreeHomomorphism], function (a) local deg, printword, i, perm, states; states := Sections(a); deg := Length(states); perm := TransformationOnLevel(a, 1); Print("("); for i in [1..deg] do View(states[i]); if i <> deg then Print(", "); fi; od; Print(")"); if not IsOne(perm) then AG_PrintTransformation(perm); fi; end); ############################################################################### ## #M PrintObj(<a>) ## InstallMethod(PrintObj, "for [IsTreeHomomorphism and IsTreeHomomorphismRep]", [IsTreeHomomorphism and IsTreeHomomorphismRep], function (a) local deg, i, states, perm; states := Sections(a); deg := Length(states); perm := TransformationOnLevel(a, 1); Print("("); for i in [1..deg] do if IsAutom(a!.states[i]) then View(a!.states[i]); else Print(a!.states[i]); fi; if i <> deg then Print(", "); fi; od; Print(")"); if not IsOne(perm) then AG_PrintTransformation(perm); fi; end); ############################################################################### ## #M String(<a>) ## InstallMethod(String, "for [IsTreeHomomorphism]", [IsTreeHomomorphism], function (a) local deg, printword, i, perm, states, str; states := Sections(a); deg := Length(states); perm := TransformationOnLevel(a, 1); str:= "("; for i in [1..deg] do Append(str, String(states[i])); if i <> deg then Append(str, ", "); fi; od; Append(str, ")"); if not IsOne(perm) then Append(str, AG_TransformationString(perm)); fi; return str; end); ############################################################################### ## #M SphericalIndex (<a>) ## InstallMethod(SphericalIndex, [IsTreeHomomorphism and IsTreeHomomorphismRep], function(a) return FamilyObj(a)!.spher_index; end); InstallMethod(TopDegreeOfTree, [IsTreeHomomorphism and IsTreeHomomorphismRep], function(a) return FamilyObj(a)!.top_deg; end); ############################################################################### ## #M TransformationOnLevel (<a>, <k>) ## InstallMethod(TransformationOnLevelOp, "for [IsTreeHomomorphism, IsPosInt]", [IsTreeHomomorphism, IsPosInt], function(a, k) local states, top, first_level, i, j, d1, d2, permuted, p; if k = 1 then return TransformationOnFirstLevel(a); fi; # TODO: it is unnesessarily greedy, it could check whether there # are trivial permutations below d1 := DegreeOfTree(a); d2 := 1; for i in [2 .. k] do d2 := d2 * DegreeOfLevel(a, i); od; states := Sections(a); top := TransformationOnFirstLevel(a); first_level := List(states, s -> TransformationOnLevel(s, k-1)); permuted := []; for i in [1..d1] do for j in [1..d2] do permuted[d2*(i-1) + j] := d2*(i^top - 1) + j^first_level[i]; od; od; # p := PermList(permuted); # if p = fail then # p := Transformation(permuted); # fi; # return p; return Transformation(permuted); end); InstallMethod(TransformationOnFirstLevel, [IsTreeHomomorphism and IsTreeHomomorphismRep], function(a) return AsTransformation(a!.perm); end); ############################################################################### ## #M k ^ a ## InstallMethod(\^, "for [IsPosInt, IsTreeHomomorphism]", [IsPosInt, IsTreeHomomorphism], function(k, a) return k ^ TransformationOnLevel(a, 1); end); ############################################################################### ## #M seq ^ a ## InstallMethod(\^, "for [IsList, IsTreeHomomorphism]", [IsList, IsTreeHomomorphism], function(seq, a) if Length(seq) = 0 then return []; elif Length(seq) = 1 then return [seq[1]^TransformationOnLevel(a, 1)]; else return Concatenation([seq[1]^TransformationOnLevel(a, 1)], seq{[2..Length(seq)]}^Section(a, seq[1])); fi; end); # ############################################################################### # ## # #M FixesLevel(<a>, <k>) # ## # InstallMethod(FixesLevel, "for [IsTreeHomomorphism, IsPosInt]", # [IsTreeHomomorphism, IsPosInt], # function(a, k) # if HasIsSphericallyTransitive(a) then # if IsSphericallyTransitive(a) then # return false; fi; fi; # # if IsOne(PermOnLevel(a, k)) then # Info(InfoAutomGrp, 3, "IsSphericallyTransitive(a): false"); # Info(InfoAutomGrp, 3, " a is not transitive on level", k); # Info(InfoAutomGrp, 3, " a = ", a); # SetIsSphericallyTransitive(a, false); # return true; # else # return false; # fi; # end); # # # ############################################################################### # ## # #M FixesVertex(<a>, <v>) # ## # InstallOtherMethod(FixesVertex, "for [IsTreeHomomorphism, IsObject]", # [IsTreeHomomorphism, IsObject], # function(a, v) # if HasIsSphericallyTransitive(a) then # if IsSphericallyTransitive(a) then # Info(InfoAutomGrp, 3, "FixesVertex(a, v): false"); # Info(InfoAutomGrp, 3, " IsSphericallyTransitive(a)"); # Info(InfoAutomGrp, 3, " a = ", a); # return false; # fi; # fi; # # if v^a = v then # Info(InfoAutomGrp, 3, "IsSphericallyTransitive(a): false"); # Info(InfoAutomGrp, 3, " a fixes vertex ", v); # Info(InfoAutomGrp, 3, " a = ", a); # SetIsSphericallyTransitive(a, false); # return true; # else # return false; # fi; # end); ############################################################################### ## #M Section(<a>, <k>) ## InstallMethod(Section, [IsTreeHomomorphism, IsPosInt], function(a, k) return Sections(a)[k]; end); InstallMethod(Section, [IsTreeHomomorphism and IsTreeHomomorphismRep, IsPosInt], function(a, k) return a!.states[k]; end); ############################################################################### ## #M Section(<a>, <v>) ## InstallMethod(Section, [IsTreeHomomorphism, IsList], function(a, v) if Length(v) = 1 then return Section(a, v[1]); else return Section(Section(a, v[1]), v{[2..Length(v)]}); fi; end); ############################################################################### ## #M Sections(<a>) ## InstallMethod(Sections, [IsTreeHomomorphism and IsTreeHomomorphismRep], function(a) return a!.states; end); ############################################################################### ## #M Sections(a, k) ## InstallMethod(Sections, "for [IsTreeHomomorphism, IsPosInt]", [IsTreeHomomorphism, IsPosInt], function(a, level) if level = 1 then return Sections(a); else return Concatenation(List(Sections(a), s -> Sections(s, level-1))); fi; end); InstallMethod(Sections, "for [IsTreeHomomorphism, IsInt and IsZero]", [IsTreeHomomorphism, IsInt and IsZero], function(a, level) return [a]; end); ############################################################################### ## #M Decompose(<a>, <k>) ## InstallMethod(Decompose, "for [IsTreeHomomorphism, IsPosInt]", [IsTreeHomomorphism, IsPosInt], function(a, level) return TreeHomomorphism(Sections(a, level), TransformationOnLevel(a, level)); end); InstallMethod(Decompose, [IsTreeHomomorphism, IsInt and IsZero], function(a, level) return a; end); ############################################################################### ## #M Decompose(<a>) ## InstallMethod(Decompose, "for [IsTreeHomomorphism]", [IsTreeHomomorphism], function(a) return Decompose(a, 1); end); ############################################################################### ## #M IsOne(<a>) ## InstallMethod(IsOne, "for [IsTreeHomomorphism]", [IsTreeHomomorphism], function(a) local s; if not IsOne(TransformationOnLevel(a, 1)) then return false; fi; for s in Sections(a) do if not IsOne(s) then return false; fi; od; return true; end); ############################################################################### ## #M \=(<a1>, <a2>) ## # TODO: can lead to infinite recursion InstallMethod(\=, "for [IsTreeHomomorphism, IsTreeHomomorphism]", ReturnTrue, [IsTreeHomomorphism, IsTreeHomomorphism], function(a1, a2) return TransformationOnLevel(a1, 1) = TransformationOnLevel(a2, 1) and Sections(a1) = Sections(a2); end); ############################################################################### ## #M \<(<a1>, <a2>) ## InstallMethod(\<, [IsTreeHomomorphism and IsTreeHomomorphismRep, IsTreeHomomorphism and IsTreeHomomorphismRep], function(a1, a2) return AG_TreeHomomorphismCmp(a1, a2) < 0; end); ############################################################################### ## ## AG_TreeHomomorphismCmp(a1, a2) ## ## Global function to be used from IsTreeAutomomorphism too ## InstallGlobalFunction(AG_TreeHomomorphismCmp, function(a1, a2) local i, cmp; cmp := AG_TrCmp(a1!.perm, a2!.perm, a1!.deg); if cmp < 0 then return -1; elif cmp > 0 then return 1; fi; for i in [1..a1!.deg] do if a1!.states[i] < a2!.states[i] then return -1; elif a1!.states[i] > a2!.states[i] then return 1; fi; od; return 0; end); ############################################################################### ## #M OneOp(<a>) ## InstallMethod(OneOp, [IsTreeHomomorphism and IsTreeHomomorphismRep], function(a) return Objectify(NewType(FamilyObj(a), IsTreeHomomorphism and IsTreeHomomorphismRep), rec(states := List([1..a!.deg], i -> One(a!.states[1])), perm := Transformation([1..a!.deg]), deg := a!.deg)); end); ############################################################################### ## #M \*(<a1>, <a2>) ## InstallMethod(\*, [IsTreeHomomorphism and IsTreeHomomorphismRep, IsTreeHomomorphism and IsTreeHomomorphismRep], function(a1, a2) local a; a := Objectify(NewType(FamilyObj(a1), IsTreeHomomorphism and IsTreeHomomorphismRep), rec(states := List([1..a1!.deg], i -> a1!.states[i] * a2!.states[i^(a1!.perm)]), perm := a1!.perm * a2!.perm, deg := a1!.deg)); SetIsActingOnBinaryTree(a, IsActingOnBinaryTree(a1)); SetIsActingOnRegularTree(a, IsActingOnRegularTree(a1)); return a; end); ############################################################################### ## #M \[\](<a1>, <a2>) ## InstallOtherMethod(\[\], [IsTreeHomomorphism, IsPosInt], function(a, k) return Section(a, k); end); ############################################################################### ## #M Representative( <word>, <fam> ) ## InstallMethod(Representative, "for [IsAssocWord, IsTreeHomomorphismFamily]", [IsAssocWord, IsTreeHomomorphismFamily], function( word, fam ) if IsAutomFamily( fam ) then return Autom( word, fam ); elif IsSelfSimFamily( fam ) then return SelfSim( word, fam ); else Error("the family <fam> must be either IsAutomFamily or IsSelfSimFamily"); fi; end); ############################################################################### ## #M Representative( <word>, <a> ) ## InstallMethod(Representative, "for [IsAssocWord, IsTreeHomomorphism]", [IsAssocWord, IsTreeHomomorphism], function( word, a ) local fam; fam := FamilyObj(a); if IsAutomFamily( fam ) then return Autom( word, fam ); elif IsSelfSimFamily( fam ) then return SelfSim( word, fam ); else Error("the homomorphism <a> must be either from IsAutomFamily or from IsSelfSimFamily"); fi; end); # ############################################################################### # ## # #M InverseOp(<a>) # ## # InstallMethod(InverseOp, "for [IsTreeHomomorphism and IsTreeHomomorphismRep]", # [IsTreeHomomorphism and IsTreeHomomorphismRep], # function(a) # local inv; # inv := Objectify(NewType(FamilyObj(a), IsTreeHomomorphism and IsTreeHomomorphismRep), # rec(states := List([1..a!.deg], i -> a!.states[i^(a!.perm^-1)]^-1), # perm := a!.perm ^ -1, # deg := a!.deg) ); # SetIsActingOnBinaryTree(inv, IsActingOnBinaryTree(a)); # SetIsActingOnRegularTree(inv, IsActingOnRegularTree(a)); # return inv; # end); # # InstallMethod(InverseOp, "for [IsTreeHomomorphism]", [IsTreeHomomorphism], # function(a) # local states, inv_states, perm; # states := Sections(a); # perm := Inverse(Perm(a)); # inv_states := List([1..Length(states)], i -> Inverse(states[i^perm])); # return TreeHomomorphism(inv_states, perm); # end); #E