Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W testselfsim.g automgrp package Dmytro Savchuk #W Yevgen Muntyan ## automgrp v 1.3 ## #Y Copyright (C) 2003 - 2016 Dmytro Savchuk, Yevgen Muntyan ## UnitTest("SelfSim", function() local l, FSSelfSimilarGroupsDefs, FSSelfSimilarGroups,\ FSSelfSimilarSemigroupsDefs, FSSelfSimilarSemigroups, G, T,hom,count,w,H; # add groups ONLY at the end of the list to keep numeration FSSelfSimilarGroupsDefs := [ "x=(1,y)(1,2),y=(z^-1,1)(1,2),z=(1,x*y)", "x=(x^-1,y)(1,2),y=(z^-1,1)(1,2),z=(1,x*y)", "a=(a^-1*b,b^-1*a)(1,2),b=(a^-1,b^-1)", [[[-1,2],[-2,1],(1,2)],[[-1],[-2],()]], ]; FSSelfSimilarSemigroupsDefs := [ "a=(1,1)[1,1],b=(a*c,1)(1,2),c=(1,a*b)", ]; FSSelfSimilarGroups := List( FSSelfSimilarGroupsDefs, SelfSimilarGroup ); FSSelfSimilarSemigroups := List( FSSelfSimilarSemigroupsDefs, SelfSimilarSemigroup ); T := Group([FSSelfSimilarGroups[2].1^2, FSSelfSimilarGroups[2].2^2]); Add( FSSelfSimilarGroups, T); for l in FSSelfSimilarGroups do AssertTrue( IsFiniteState(l)); od; for l in FSSelfSimilarSemigroups do AssertTrue( IsFiniteState(l)); od; AssertEqual( NumberOfStates( UnderlyingAutomaton( UnderlyingAutomatonGroup( FSSelfSimilarGroups[1]))),15); AssertEqual( NumberOfStates( UnderlyingAutomaton( UnderlyingAutomatonGroup( FSSelfSimilarGroups[2]))),51); AssertEqual( Size( GeneratorsOfGroup( UnderlyingAutomatonGroup( FSSelfSimilarGroups[2]))), 50); AssertEqual( NumberOfStates( UnderlyingAutomaton( UnderlyingAutomatonGroup( FSSelfSimilarGroups[3]))),5); AssertEqual( NumberOfStates( UnderlyingAutomaton( UnderlyingAutomatonGroup(T))),52); AssertEqual(NumberOfStates(UnderlyingAutomaton(UnderlyingAutomatonSemigroup(FSSelfSimilarSemigroups[1]))),5); for G in FSSelfSimilarGroups do hom := MonomorphismToAutomatonGroup(G); for count in [1..10] do w:=Random(G); AssertEqual(w,PreImagesRepresentative(hom,w^hom)); od; od; for G in FSSelfSimilarSemigroups do hom := MonomorphismToAutomatonSemigroup(G); for count in [1..10] do w:=Random(G); AssertEqual(w,PreImagesRepresentative(hom,w^hom)); od; od; # example of finite self-similar group H := SelfSimilarGroup("a=(a*b,1)(1,2), b=(1,b*a^-1)(1,2), c=(b, a*b)"); AssertTrue(IsFinite(H)); AssertEqual(Size(H), 8); AssertTrue(H.1=H.2); AssertTrue( not H.1<H.2); hom := IsomorphismPermGroup(H); for w in H do AssertEqual(w,PreImagesRepresentative(hom,w^hom)); od; H := AG_Groups.GrigorchukGroup; AssertTrue(Size(H) = infinity); end);