Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W teststructures.g automgrp package Dmytro Savchuk #W Yevgen Muntyan ## automgrp v 1.3 ## #Y Copyright (C) 2003 - 2016 Dmytro Savchuk, Yevgen Muntyan ## _ST_Groups := [ [[[1,1,()]], false], ["a=(1,a)(1,2)", true], ["a=(1,b)(1,2), b=(1,a)", true], ["a=(1,1)(1,2), b=(a,c), c=(a,d), d=(1,b)", true], ["a=(1,2)(3,4)(5,6), b=(1,c,a,c,a,c), c=(a,d,1,d,a,d), d=(a,b,a,b,1,b)", true], ["a=(c,b), b=(b,c), c=(a,a)(1,2)", false], ["a=(c,b)(1,2), b=(b,c)(1,2), c=(a,a)", false], ]; _ST_Semigroups := Concatenation(_ST_Groups, [ ["a=(a,a)[1,2]"], ["a=(a,a)[1,1]"], ["a=(a,a)[1,1], b = (a,a) [1,1]"], ["a=(a ,b) [1, 1]; b=(a, a)[1,2]"], ]); UnitTest("Parsing automaton string", function() local list, l; list := [ [ "a=(1,1)", [ [ "a", 1 ], [ [ 2, 2, () ], [ 2, 2, () ] ] ] ], [ "a=(1,1)(1,2)", [ [ "a", 1 ], [ [ 2, 2, (1,2) ], [ 2, 2, () ] ] ] ], [ "a=(1,1)(1,2)", [ [ "a", 1 ], [ [ 2, 2, (1,2) ], [ 2, 2, () ] ] ] ], [ "a=(1,b)(1,2), b=(1,a)", [ [ "a", "b", 1 ], [ [ 3, 2, (1,2) ], [ 3, 1, () ], [ 3, 3, () ] ] ] ], [ "a=(1,1)(1,2), b=(a,c), c=(a,d), d=(1,b)", [ [ "a", "b", "c", "d", 1 ], [ [ 5, 5, (1,2) ], [ 1, 3, () ], [ 1, 4, () ], [ 5, 2, () ], [ 5, 5, () ] ] ] ], [ "a=(1,2)(3,4)(5,6), b=(1,c,a,c,a,c), c=(a,d,1,d,a,d), d=(a,b,a,b,1,b)", [ [ "a", "b", "c", "d", 1 ], [ [ 5, 5, 5, 5, 5, 5, (1,2)(3,4)(5,6) ], [ 5, 3, 1, 3, 1, 3, () ], [ 1, 4, 5, 4, 1, 4, () ], [ 1, 2, 1, 2, 5, 2, () ], [ 5, 5, 5, 5, 5, 5, () ] ] ] ], [ "a=(c,b), b=(b,c), c=(a,a)(1,2)", [ [ "a", "b", "c" ], [ [ 3, 2, () ], [ 2, 3, () ], [ 1, 1, (1,2) ] ] ] ], [ "a=(c,b)(1,2), b=(b,c)(1,2), c=(a,a)", [ [ "a", "b", "c" ], [ [ 3, 2, (1,2) ], [ 2, 3, (1,2) ], [ 1, 1, () ] ] ] ], [ "a=(a,a)[1,2]", [ [ "a" ], [ [ 1, 1, Transformation( [ 1, 2 ] ) ] ] ] ], [ "a=(a,a)[1,1]", [ [ "a" ], [ [ 1, 1, Transformation( [ 1, 1 ] ) ] ] ] ], [ "a=(a,a)[1,1], b = (a,a) [1,1]", [ [ "a", "b" ], [ [ 1, 1, Transformation( [ 1, 1 ] ) ], [ 1, 1, Transformation( [ 1, 1 ] ) ] ] ] ], [ "a=(a ,b) [1, 1]; b=(a, a)[1,2]", [ [ "a", "b" ], [ [ 1, 2, Transformation( [ 1, 1 ] ) ], [ 1, 1, Transformation( [ 1, 2 ] ) ] ] ] ] ]; for l in list do AssertEqual(AG_ParseAutomatonString(l[1]), l[2]); od; end); UnitTest("Groups", function() local l; for l in _ST_Groups do AssertTrue(IsAutomGroup(AutomatonGroup(l[1]))); if l[2] then AssertTrue(IsContracting(AutomatonGroup(l[1]))); fi; od; end); UnitTest("Semigroups", function() local l, g, a; for l in _ST_Semigroups do g := AutomatonSemigroup(l[1]); AssertTrue(IsAutomSemigroup(g)); if l in _ST_Groups then AssertTrue(ForAll(GeneratorsOfSemigroup(g), IsInvertibleAutom)); AssertTrue(IsAutomGroup(GroupOfAutomFamily(UnderlyingAutomFamily(g)))); fi; od; end); _ST_MultWord := function(word, family) local rep, product, gen, gens, i; rep := LetterRepAssocWord(word); product := One(family); if IsSelfSimFamily(family) then gens := family!.recurgens; else gens := family!.automgens; fi; for i in rep do if i > 0 then gen := gens[i]; else gen := gens[-i]^-1; fi; product := product * gen; od; return product; end; _ST_TestMultiplication1 := function(table, isgroup, contracting, use_rws, do_selfsim) local group, fam, w, a, b, c, count; if do_selfsim then if isgroup then group := SelfSimilarGroup(table, false); else group := SelfSimilarSemigroup(table, false); fi; if IsTrivial(group) then return; fi; fam := UnderlyingSelfSimFamily(group); else if isgroup then group := AutomatonGroup(table, false); else group := AutomatonSemigroup(table, false); fi; fam := UnderlyingAutomFamily(group); fi; if contracting then IsContracting(group); fi; if use_rws then AG_UseRewritingSystem(fam); fi; for count in [1..10] do a := Random(group); b := Random(group); c := Random(group); AssertEqual((a*b)*c, a*(b*c)); if isgroup then AssertEqual(Comm(a,b), Comm(b,a)^-1); fi; od; count := 0; for w in fam!.freegroup do if isgroup or ForAll(LetterRepAssocWord(w), x -> x > 0) then if do_selfsim then a := SelfSim(w, fam); AssertTrue(IsSelfSim(a)); else a := Autom(w, fam); AssertTrue(IsAutom(a)); fi; AssertEqual(a, _ST_MultWord(w, fam)); if isgroup then AssertEqual(a*a^-1, a^-1*a); AssertTrue(IsOne(a*a^-1)); AssertEqual(a*a^-1, One(a)); fi; if AG_Globals.run_tests_forever then AssertEqual(a*a, a^2); fi; count := count + 1; if count > 20 then break; fi; fi; od; end; UnitTest("Multiplication in groups", function() local g; for g in _ST_Groups do _ST_TestMultiplication1(g[1], true, false, false, false); if g[2] then _ST_TestMultiplication1(g[1], true, true, false, false); fi; od; end); UnitTest("Multiplication in self-similar groups", function() local g; for g in _ST_Groups do _ST_TestMultiplication1(g[1], true, false, false, true); if g[2] then _ST_TestMultiplication1(g[1], true, true, false, true); fi; od; end); UnitTest("Multiplication in semigroups", function() local g; for g in _ST_Semigroups do _ST_TestMultiplication1(g[1], false, false, false, false); od; end); UnitTest("Multiplication in self-similar semigroups", function() local g; for g in _ST_Semigroups do _ST_TestMultiplication1(g[1], false, false, false, true); od; end); UnitTest("Rewriting systems", function() local l; for l in _ST_Groups do if Length(l[1]) > 1 then _ST_TestMultiplication1(l[1], true, false, true, false); if l[2] then _ST_TestMultiplication1(l[1], true, true, true, false); fi; fi; od; end); UnitTest("Rewriting systems self-sim", function() local l; for l in _ST_Groups do if Length(l[1]) > 1 then _ST_TestMultiplication1(l[1], true, false, true, true); if l[2] then _ST_TestMultiplication1(l[1], true, true, true, true); fi; fi; od; end); UnitTest("Decompose", function() local l, group, a, b, count; for l in _ST_Semigroups do group := AutomatonSemigroup(l[1]); for count in [1..10] do a := Random(group); AssertEqual(Decompose(a), a); a := Decompose(a) * Decompose(a); AssertEqual(Decompose(a), a); od; od; end);