GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1%%2%A method.tex AutPGrp documentation Bettina Eick3%A Eamonn O'Brien4%%56%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7\Chapter{The automorphism group method}89The {\AutPGrp} package installs a method for `AutomorphismGroup' for a10finite $p$-group (see also Section~"ref:Groups of Automorphisms"11in the {\GAP} Reference Manual).1213\> AutomorphismGroup( <G> ) M1415The input is a finite $p$-group <G>. If the filters `IsPGroup',16`IsFinite' and `CanEasilyComputePcgs' are set and true for <G>,17the method selection of {\GAP}~4 invokes this algorithm.1819The output of the method is an automorphism group, whose generators20are given in `GroupHomomorphismByImages' format in terms of their action21on the underlying group <G>.2223\indextt{SetInfoLevel}24\>`InfoAutGrp' V2526This is a {\GAP} InfoClass (these are described in Chapter~"ref:Info27Functions" in the {\GAP} Reference Manual). By assigning an <info-level>28in the range 1 to 4 via2930\){\kernttindent}SetInfoLevel(InfoAutGrp, <info-level>)3132varying levels of information on the progress of33the computation, will be obtained.3435\beginexample36gap> LoadPackage("autpgrp", false);37true3839gap> G := SmallGroup( 32, 15 );40<pc group of size 32 with 5 generators>4142gap> SetInfoLevel( InfoAutGrp, 1 );4344gap> AutomorphismGroup(G);45#I step 1: 2^2 -- init automorphisms46#I step 2: 2^2 -- aut grp has size 247#I step 3: 2^1 -- aut grp has size 3248#I final step: convert49<group of size 64 with 6 generators>50\endexample5152The algorithm proceeds by induction down the lower $p$-central53series of <G> and the information corresponds54to the steps of this induction. In the following example we observe55that the method also accepts permutation groups as input, provided56they satisfy the required filters.5758\beginexample59gap> G := DihedralGroup( IsPermGroup, 2^5 );60Group([ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),61( 2,16)( 3,15)( 4,14)( 5,13)( 6,12)( 7,11)( 8,10) ])62gap> IsPGroup(G);63true64gap> CanEasilyComputePcgs(G);65true66gap> IsFinite(G);67true68gap> A := AutomorphismGroup(G);69#I step 1: 2^2 -- init automorphisms70#I step 2: 2^1 -- aut grp has size 271#I step 3: 2^1 -- aut grp has size 872#I step 4: 2^1 -- aut grp has size 3273#I final step: convert74<group of size 128 with 7 generators>75gap> A.1;76Pcgs([ ( 2,16)( 3,15)( 4,14)( 5,13)( 6,12)( 7,11)( 8,10),77( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),78( 1, 3, 5, 7, 9,11,13,15)( 2, 4, 6, 8,10,12,14,16),79( 1, 5, 9,13)( 2, 6,10,14)( 3, 7,11,15)( 4, 8,12,16),80( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16) ]) ->81[ ( 1, 2)( 3,16)( 4,15)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10),82( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),83( 1, 3, 5, 7, 9,11,13,15)( 2, 4, 6, 8,10,12,14,16),84( 1, 5, 9,13)( 2, 6,10,14)( 3, 7,11,15)( 4, 8,12,16),85( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16) ]86gap> Order(A.1);871688\endexample8990%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%919293