Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

561421 views
1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
%%
3
%A method.tex AutPGrp documentation Bettina Eick
4
%A Eamonn O'Brien
5
%%
6
7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
\Chapter{The automorphism group method}
9
10
The {\AutPGrp} package installs a method for `AutomorphismGroup' for a
11
finite $p$-group (see also Section~"ref:Groups of Automorphisms"
12
in the {\GAP} Reference Manual).
13
14
\> AutomorphismGroup( <G> ) M
15
16
The input is a finite $p$-group <G>. If the filters `IsPGroup',
17
`IsFinite' and `CanEasilyComputePcgs' are set and true for <G>,
18
the method selection of {\GAP}~4 invokes this algorithm.
19
20
The output of the method is an automorphism group, whose generators
21
are given in `GroupHomomorphismByImages' format in terms of their action
22
on the underlying group <G>.
23
24
\indextt{SetInfoLevel}
25
\>`InfoAutGrp' V
26
27
This is a {\GAP} InfoClass (these are described in Chapter~"ref:Info
28
Functions" in the {\GAP} Reference Manual). By assigning an <info-level>
29
in the range 1 to 4 via
30
31
\){\kernttindent}SetInfoLevel(InfoAutGrp, <info-level>)
32
33
varying levels of information on the progress of
34
the computation, will be obtained.
35
36
\beginexample
37
gap> LoadPackage("autpgrp", false);
38
true
39
40
gap> G := SmallGroup( 32, 15 );
41
<pc group of size 32 with 5 generators>
42
43
gap> SetInfoLevel( InfoAutGrp, 1 );
44
45
gap> AutomorphismGroup(G);
46
#I step 1: 2^2 -- init automorphisms
47
#I step 2: 2^2 -- aut grp has size 2
48
#I step 3: 2^1 -- aut grp has size 32
49
#I final step: convert
50
<group of size 64 with 6 generators>
51
\endexample
52
53
The algorithm proceeds by induction down the lower $p$-central
54
series of <G> and the information corresponds
55
to the steps of this induction. In the following example we observe
56
that the method also accepts permutation groups as input, provided
57
they satisfy the required filters.
58
59
\beginexample
60
gap> G := DihedralGroup( IsPermGroup, 2^5 );
61
Group([ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),
62
( 2,16)( 3,15)( 4,14)( 5,13)( 6,12)( 7,11)( 8,10) ])
63
gap> IsPGroup(G);
64
true
65
gap> CanEasilyComputePcgs(G);
66
true
67
gap> IsFinite(G);
68
true
69
gap> A := AutomorphismGroup(G);
70
#I step 1: 2^2 -- init automorphisms
71
#I step 2: 2^1 -- aut grp has size 2
72
#I step 3: 2^1 -- aut grp has size 8
73
#I step 4: 2^1 -- aut grp has size 32
74
#I final step: convert
75
<group of size 128 with 7 generators>
76
gap> A.1;
77
Pcgs([ ( 2,16)( 3,15)( 4,14)( 5,13)( 6,12)( 7,11)( 8,10),
78
( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),
79
( 1, 3, 5, 7, 9,11,13,15)( 2, 4, 6, 8,10,12,14,16),
80
( 1, 5, 9,13)( 2, 6,10,14)( 3, 7,11,15)( 4, 8,12,16),
81
( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16) ]) ->
82
[ ( 1, 2)( 3,16)( 4,15)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10),
83
( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16),
84
( 1, 3, 5, 7, 9,11,13,15)( 2, 4, 6, 8,10,12,14,16),
85
( 1, 5, 9,13)( 2, 6,10,14)( 3, 7,11,15)( 4, 8,12,16),
86
( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16) ]
87
gap> Order(A.1);
88
16
89
\endexample
90
91
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
92
93