Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X4 [33X[0;0YA sample computation with [5XCircle[105X[101X[1X[133X[101X23[33X[0;0YHere we give an example to give the reader an idea what [5XCircle[105X is able to4compute.[133X56[33X[0;0YIt was proved in [KS04] that if [22XR[122X is a finite nilpotent two-generated7algebra over a field of characteristic [22Xp>3[122X whose adjoint group has at most8three generators, then the dimension of [22XR[122X is not greater than 9. Also, an9example of the 6-dimensional such algebra with the 3-generated adjoint group10was given there. We will construct the algebra from this example and11investigate it using [5XCircle[105X. First we create two matrices that determine its12generators:[133X1314[4X[32X Example [32X[104X15[4X[28X[128X[104X16[4X[25Xgap>[125X [27Xx:=[ [ 0, 1, 0, 0, 0, 0, 0 ],[127X[104X17[4X[25X>[125X [27X [ 0, 0, 0, 1, 0, 0, 0 ],[127X[104X18[4X[25X>[125X [27X [ 0, 0, 0, 0, 1, 0, 0 ],[127X[104X19[4X[25X>[125X [27X [ 0, 0, 0, 0, 0, 0, 1 ],[127X[104X20[4X[25X>[125X [27X [ 0, 0, 0, 0, 0, 1, 0 ],[127X[104X21[4X[25X>[125X [27X [ 0, 0, 0, 0, 0, 0, 0 ],[127X[104X22[4X[25X>[125X [27X [ 0, 0, 0, 0, 0, 0, 0 ] ];;[127X[104X23[4X[25Xgap>[125X [27Xy:=[ [ 0, 0, 1, 0, 0, 0, 0 ],[127X[104X24[4X[25X>[125X [27X [ 0, 0, 0, 0,-1, 0, 0 ],[127X[104X25[4X[25X>[125X [27X [ 0, 0, 0, 1, 0, 1, 0 ],[127X[104X26[4X[25X>[125X [27X [ 0, 0, 0, 0, 0, 1, 0 ],[127X[104X27[4X[25X>[125X [27X [ 0, 0, 0, 0, 0, 0,-1 ],[127X[104X28[4X[25X>[125X [27X [ 0, 0, 0, 0, 0, 0, 0 ],[127X[104X29[4X[25X>[125X [27X [ 0, 0, 0, 0, 0, 0, 0 ] ];;[127X[104X30[4X[28X[128X[104X31[4X[32X[104X3233[33X[0;0YNow we construct this algebra in characteristic five and check its basic34properties:[133X3536[4X[32X Example [32X[104X37[4X[28X[128X[104X38[4X[25Xgap>[125X [27XR := Algebra( GF(5), One(GF(5))*[x,y] );[127X[104X39[4X[28X<algebra over GF(5), with 2 generators>[128X[104X40[4X[25Xgap>[125X [27XDimension( R );[127X[104X41[4X[28X6[128X[104X42[4X[25Xgap>[125X [27XSize( R );[127X[104X43[4X[28X15625[128X[104X44[4X[25Xgap>[125X [27XRadicalOfAlgebra( R ) = R;[127X[104X45[4X[28Xtrue[128X[104X46[4X[28X[128X[104X47[4X[32X[104X4849[33X[0;0YThen we compute the adjoint group of [10XR[110X:[133X5051[4X[32X Example [32X[104X52[4X[28X[128X[104X53[4X[25Xgap>[125X [27XG := AdjointGroup( R );;[127X[104X54[4X[25Xgap>[125X [27XSize(G);[127X[104X55[4X[28X15625[128X[104X56[4X[28X[128X[104X57[4X[32X[104X5859[33X[0;0YNow we can find the generating set of minimal possible order for the group60[10XG[110X, and check that [10XG[110X it is 3-generated. To do this, first we need to convert61it to the isomorphic PcGroup:[133X6263[4X[32X Example [32X[104X64[4X[28X[128X[104X65[4X[25Xgap>[125X [27Xf := IsomorphismPcGroup( G );;[127X[104X66[4X[25Xgap>[125X [27XH := Image( f );[127X[104X67[4X[28XGroup([ f1, f2, f3, f4, f5, f6 ])[128X[104X68[4X[25Xgap>[125X [27Xgens := MinimalGeneratingSet( H );;[127X[104X69[4X[25Xgap>[125X [27XLength( gens );[127X[104X70[4X[28X3[128X[104X71[4X[28X[128X[104X72[4X[32X[104X7374[33X[0;0YOne can also use [10XUnderlyingRingElement(PreImage(f,x))[110X to find the preimage75of [10Xx[110X in [10XG[110X.[133X7677[33X[0;0YIt appears that the adjoint group of the algebra from example will be783-generated in characteristic 3 as well:[133X7980[4X[32X Example [32X[104X81[4X[28X[128X[104X82[4X[25Xgap>[125X [27XR := Algebra( GF(3), One(GF(3))*[x,y] );[127X[104X83[4X[28X<algebra over GF(3), with 2 generators>[128X[104X84[4X[25Xgap>[125X [27XG := AdjointGroup( R );;[127X[104X85[4X[25Xgap>[125X [27XH := Image( IsomorphismPcGroup( G ) );[127X[104X86[4X[28XGroup([ f1, f2, f3, f4, f5, f6 ])[128X[104X87[4X[25Xgap>[125X [27XLength( MinimalGeneratingSet( H ) );[127X[104X88[4X[28X3[128X[104X89[4X[28X[128X[104X90[4X[32X[104X9192[33X[0;0YBut this is not the case in characteristic 2, where the adjoint group is934-generated:[133X9495[4X[32X Example [32X[104X96[4X[28X[128X[104X97[4X[25Xgap>[125X [27XR := Algebra( GF(2), One(GF(2))*[x,y] );[127X[104X98[4X[28X<algebra over GF(2), with 2 generators>[128X[104X99[4X[25Xgap>[125X [27XG := AdjointGroup( R );;[127X[104X100[4X[25Xgap>[125X [27XSize(G);[127X[104X101[4X[28X64[128X[104X102[4X[25Xgap>[125X [27XH := Image( IsomorphismPcGroup( G ) );[127X[104X103[4X[28XGroup([ f1, f2, f3, f4, f5, f6 ])[128X[104X104[4X[25Xgap>[125X [27XLength( MinimalGeneratingSet( H ) );[127X[104X105[4X[28X4[128X[104X106[4X[28X[128X[104X107[4X[32X[104X108109110111