CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
3
References
4
5
[AI97] Artemovych, O. D. and Ishchuk, Y. B., On semiperfect rings determined
6
by adjoint groups, Mat. Stud., 8, 2 (1997), 162--170, 237.
7
8
[AK00] Amberg, B. and Kazarin, L. S., On the adjoint group of a finite
9
nilpotent p-algebra, J. Math. Sci. (New York), 102, 3 (2000), 3979--3997.
10
11
[AS01] Amberg, B. and Sysak, Y. P., Radical rings and their adjoint groups,
12
in Topics in infinite groups, Dept. Math., Seconda Univ. Napoli, Caserta,
13
Quad. Mat., 8 (2001), 21--43.
14
15
[AS02] Amberg, B. and Sysak, Y. P., Radical rings with soluble adjoint
16
groups, J. Algebra, 247, 2 (2002), 692--702.
17
18
[AS04] Amberg, B. and Sysak, Y. P., Associative rings with metabelian
19
adjoint group, J. Algebra, 277, 2 (2004), 456--473.
20
21
[Gor95] Gorlov, V. O., Finite nilpotent algebras with a metacyclic
22
quasiregular group, Ukra\"\i n. Mat. Zh., 47, 10 (1995), 1426--1431.
23
24
[KS04] Kazarin, L. S. and Soules, P., Finite nilpotent p-algebras whose
25
adjoint group has three generators, JP J. Algebra Number Theory Appl., 4, 1
26
(2004), 113--127.
27
28
[PS97] Popovich, S. V. and Sysak, Y. P., Radical algebras whose subgroups of
29
adjoint groups are subalgebras, Ukra\"\i n. Mat. Zh., 49, 12 (1997),
30
1646--1652.
31
32
33
34

35
36