Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W adjoint.gd The CIRCLE package Alexander Konovalov ## Panagiotis Soules ## ## Let R be an associative ring, not necessarily with a unit element. The ## set of all elements of R forms a monoid with neutral element 0 from R ## under the operation r * s = r + s + rs for all r and s of R. This monoid ## is called the adjoint semigroup of R and is denoted R^ad. The group of ## all invertible elements of this monoid is called the adjoint group of R ## and is denoted by R^*. ## ## This file contains declarations related with ## adoint semigroups and adjoint groups. ## ############################################################################# ############################################################################# ## #A IsUnit( <R>, <circle_obj> ) ## ## we declare separate method for IsUnit for circle objects because ## they are not ring elements for which this method is already declared ## DeclareOperation( "IsUnit", [ IsRing, IsDefaultCircleObject ] ); ############################################################################# ## #A IsCircleUnit( <obj> ) ## ## Let <obj> be an element of the ring R. Then `IsCircleUnit( <obj> )' ## determines whether it is invertible with respect to the circle ## multilpication x+y+xy. This is equivalent to the condition that 1+obj ## is a unit in R with respect to the ordinary multiplication. ## DeclareOperation( "IsCircleUnit", [ IsRing, IsRingElement ] ); ############################################################################# ## #A AdjointSemigroup( <R> ) ## DeclareAttribute( "AdjointSemigroup", IsRing ); ############################################################################# ## #A AdjointGroup( <R> ) ## DeclareAttribute( "AdjointGroup", IsRing ); ############################################################################# ## #A UnderlyingRing( <G> ) ## DeclareAttribute( "UnderlyingRing", IsSemigroup ); ############################################################################# ## #E ##