CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
3
Congruence
4
5
6
Congruence subgroups of SL_2(ℤ)
7
8
9
Version 1.2.1
10
11
12
26 September 2017
13
14
15
Ann Dooms
16
17
Eric Jespers
18
19
Alexander Konovalov
20
21
Helena Verrill
22
23
24
25
Ann Dooms
26
Email: mailto:[email protected]
27
Homepage: http://homepages.vub.ac.be/~andooms
28
Address: Department of Mathematics, Vrije Universiteit Brussel
29
Pleinlaan 2, Brussels, B-1050 Belgium
30
31
32
Eric Jespers
33
Email: mailto:[email protected]
34
Homepage: http://homepages.vub.ac.be/~efjesper
35
Address: Department of Mathematics, Vrije Universiteit Brussel
36
Pleinlaan 2, Brussels, B-1050 Belgium
37
38
39
Alexander Konovalov
40
Email: mailto:[email protected]
41
Homepage: https://alexk.host.cs.st-andrews.ac.uk
42
Address: School of Computer Science
43
University of St Andrews
44
Jack Cole Building, North Haugh,
45
St Andrews, Fife, KY16 9SX, Scotland
46
47
48
Helena Verrill
49
Email: mailto:[email protected]
50
Homepage: http://www.math.lsu.edu/~verrill/
51
Address: Department of Mathematics
52
Louisiana State University
53
Baton Rouge, Louisiana, 70803-4918
54
USA
55
56
57
58
-------------------------------------------------------
59
Abstract
60
The GAP package Congruence provides functionality to work with congruence
61
subgroups of SL_2(ℤ).
62
63
64
-------------------------------------------------------
65
Copyright
66
© 2006-2017 by Ann Dooms, Eric Jespers, Alexander Konovalov and Helena
67
Verrill.
68
69
Congruence is free software; you can redistribute it and/or modify it under
70
the terms of the GNU General Public License as published by the Free
71
Software Foundation; either version 2 of the License, or (at your option)
72
any later version. For details, see the FSF's own site
73
http://www.gnu.org/licenses/gpl.html.
74
75
If you obtained Congruence, we would be grateful for a short notification
76
sent to one of the authors.
77
78
If you publish a result which was partially obtained with the usage of
79
Congruence, please cite it in the following form:
80
81
A. Dooms, E. Jespers, A. Konovalov and H. Verrill. Congruence --- Congruence
82
subgroups of SL_2(ℤ), Version 1.2.1; 2017
83
(http://www.cs.st-andrews.ac.uk/~alexk/congruence/).
84
85
86
-------------------------------------------------------
87
Acknowledgements
88
We are very grateful to Mong-Lung Lang, Chong-Hai Lim and Ser Peow Tan for
89
their comments provided while implementing algorithms from [LLT95a] and
90
[LLT95b], and to Francqui Stichting (Belgium) for the support of the third
91
author.
92
93
94
-------------------------------------------------------
95
96
97
Contents (Congruence)
98
99
1 Introduction
100
1.1 General aims of Congruence package
101
1.2 Installation and system requirements
102
2 Construction of congruence subgroups
103
2.1 Construction of congruence subgroups
104
2.1-1 PrincipalCongruenceSubgroup
105
2.1-2 CongruenceSubgroupGamma0
106
2.1-3 CongruenceSubgroupGammaUpper0
107
2.1-4 CongruenceSubgroupGamma1
108
2.1-5 CongruenceSubgroupGammaUpper1
109
2.1-6 IntersectionOfCongruenceSubgroups
110
2.2 Properties of congruence subgroups
111
2.2-1 IsPrincipalCongruenceSubgroup
112
2.2-2 IsCongruenceSubgroupGamma0
113
2.2-3 IsCongruenceSubgroupGammaUpper0
114
2.2-4 IsCongruenceSubgroupGamma1
115
2.2-5 IsCongruenceSubgroupGammaUpper1
116
2.2-6 IsIntersectionOfCongruenceSubgroups
117
2.3 Attributes of congruence subgroups
118
2.3-1 LevelOfCongruenceSubgroup
119
2.3-2 IndexInSL2Z
120
2.3-3 DefiningCongruenceSubgroups
121
2.4 Operations for congruence subgroups
122
2.4-1 Random
123
2.4-2 \in
124
2.4-3 CanEasilyCompareCongruenceSubgroups
125
2.4-4 IsSubset
126
2.4-5 Index
127
3 Farey symbols and their properties
128
3.1 Construction of Farey symbols
129
3.1-1 FareySymbolByData
130
3.1-2 IsValidFareySymbol
131
3.2 Properties of Farey symbols
132
3.2-1 GeneralizedFareySequence
133
3.2-2 NumeratorOfGFSElement
134
3.2-3 DenominatorOfGFSElement
135
3.2-4 LabelsOfFareySymbol
136
4 Farey symbols for congruence subgroups
137
4.1 Computation of the Farey symbol for a finite index subgroup
138
4.1-1 FareySymbol
139
4.2 Computation of generators of a finite index subgroup from its Farey
140
symbol
141
4.2-1 MatrixByEvenInterval
142
4.2-2 MatrixByOddInterval
143
4.2-3 MatrixByFreePairOfIntervals
144
4.2-4 GeneratorsByFareySymbol
145
4.2-5 GeneratorsOfGroup
146
4.3 Other properties derived from Farey symbols
147
4.3-1 IndexInPSL2ZByFareySymbol
148
5 Service functions of the Congruence package
149
5.1 Additional information displayed by Congruence algorithms
150
5.1-1 InfoCongruence
151
152
153

154
155