[1XReferences[101X
[[20XCLLT93[120X] [16XChan, S.-P., Lang, M.-L., Lim, C.-H. and Tan, S. P.[116X, [17XSpecial
polygons for subgroups of the modular group and applications[117X, [18XInternat. J.
Math.[118X, [19X4[119X, 1 (1993), 11--34.
[[20XKul91[120X] [16XKulkarni, R. S.[116X, [17XAn arithmetic-geometric method in the study of the
subgroups of the modular group[117X, [18XAmer. J. Math.[118X, [19X113[119X, 6 (1991), 1053--1133.
[[20XLLT95a[120X] [16XLang, M.-L., Lim, C.-H. and Tan, S. P.[116X, [17XAn algorithm for
determining if a subgroup of the modular group is congruence[117X, [18XJ. London
Math. Soc. (2)[118X, [19X51[119X, 3 (1995), 491--502.
[[20XLLT95b[120X] [16XLang, M.-L., Lim, C.-H. and Tan, S. P.[116X, [17XIndependent generators for
congruence subgroups of Hecke groups[117X, [18XMath. Z.[118X, [19X220[119X, 4 (1995), 569--594.
[32X