CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
3
References
4
5
[CLLT93] Chan, S.-P., Lang, M.-L., Lim, C.-H. and Tan, S. P., Special
6
polygons for subgroups of the modular group and applications, Internat. J.
7
Math., 4, 1 (1993), 11--34.
8
9
[Kul91] Kulkarni, R. S., An arithmetic-geometric method in the study of the
10
subgroups of the modular group, Amer. J. Math., 113, 6 (1991), 1053--1133.
11
12
[LLT95a] Lang, M.-L., Lim, C.-H. and Tan, S. P., An algorithm for
13
determining if a subgroup of the modular group is congruence, J. London
14
Math. Soc. (2), 51, 3 (1995), 491--502.
15
16
[LLT95b] Lang, M.-L., Lim, C.-H. and Tan, S. P., Independent generators for
17
congruence subgroups of Hecke groups, Math. Z., 220, 4 (1995), 569--594.
18
19
20
21

22
23