GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X6 [33X[0;0YDatabases of Residue-Class-Wise Affine Groups and -Mappings[133X[101X23[33X[0;0YThe [5XRCWA[105X package contains a number of databases of rcwa groups and rcwa4mappings. They can be loaded into a [5XGAP[105X session by the functions described5in this chapter.[133X678[1X6.1 [33X[0;0YThe collection of examples[133X[101X910[1X6.1-1 LoadRCWAExamples[101X1112[29X[2XLoadRCWAExamples[102X( ) [32X function13[6XReturns:[106X [33X[0;10Ythe name of the variable to which the record containing the14collection of examples of rcwa groups and -mappings loaded from15the file [11Xpkg/rcwa/examples/examples.g[111X got bound.[133X1617[33X[0;0YThe components of the examples record are records which contain the18individual groups and mappings. A detailed description of some of the19examples can be found in Chapter [14X7[114X.[133X2021[4X[32X Example [32X[104X22[4X[28X[128X[104X23[4X[25Xgap>[125X [27XLoadRCWAExamples();[127X[104X24[4X[28X"RCWAExamples" [128X[104X25[4X[25Xgap>[125X [27XSet(RecNames(RCWAExamples));[127X[104X26[4X[28X[ "AbelianGroupOverPolynomialRing", "Basics", "CT3Z", "CTPZ", [128X[104X27[4X[28X "CheckingForSolvability", "ClassSwitches", [128X[104X28[4X[28X "ClassTranspositionProducts", "ClassTranspositionsAsCommutators", [128X[104X29[4X[28X "CollatzFactorizationOld", "CollatzMapping", "CollatzlikePerms", [128X[104X30[4X[28X "CoprimeMultDiv", "F2_PSL2Z", "Farkas", "FiniteQuotients", [128X[104X31[4X[28X "FiniteVsDenseCycles", "GF2xFiniteCycles", "GrigorchukQuotients", [128X[104X32[4X[28X "Hexagon", "HicksMullenYucasZavislak", "HigmanThompson", [128X[104X33[4X[28X "LongCyclesOfPrimeLength", "MatthewsLeigh", [128X[104X34[4X[28X "MaybeInfinitelyPresentedGroup", "ModuliOfPowers", [128X[104X35[4X[28X "OddNumberOfGens_FiniteOrder", "Semilocals", [128X[104X36[4X[28X "SlowlyContractingMappings", "Syl3_S9", "SymmetrizingCollatzTree", [128X[104X37[4X[28X "TameGroupByCommsOfWildPerms", "Venturini", "ZxZ" ][128X[104X38[4X[25Xgap>[125X [27XAssignGlobals(RCWAExamples.CollatzMapping);[127X[104X39[4X[28XThe following global variables have been assigned:[128X[104X40[4X[28X[ "T", "T5", "T5m", "T5p", "Tm", "Tp" ][128X[104X41[4X[28X[128X[104X42[4X[32X[104X434445[1X6.2 [33X[0;0YDatabases of rcwa groups[133X[101X4647[1X6.2-1 LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions[101X4849[29X[2XLoadDatabaseOfGroupsGeneratedBy3ClassTranspositions[102X( ) [32X function50[6XReturns:[106X [33X[0;10Ythe name of the variable to which the record containing the51database of all groups generated by 3 class transpositions which52interchange residue classes with moduli [22X≤ 6[122X got bound.[133X5354[33X[0;0YThe database record has at least the following components (the index [10Xi[110X is55always an integer in the range [10X[1..52394][110X, and the term [21Xindices[121X always56refers to list indices in that range):[133X5758[8X[10Xcts[110X[8X[108X59[33X[0;6YThe list of all 69 class transpositions which interchange residue60classes with moduli [22X≤ 6[122X.[133X6162[8X[10Xgrps[110X[8X[108X63[33X[0;6YThe list of the 52394 groups -- 21948 finite and 30446 infinite ones.[133X6465[8X[10Xsizes[110X[8X[108X66[33X[0;6YThe list of group orders -- it is [10XSize(grps[i]) = sizes[i][110X.[133X6768[8X[10Xmods[110X[8X[108X69[33X[0;6YThe list of moduli of the groups -- it is [10XMod(grps[i]) = mods[i][110X.[133X7071[8X[10Xequalityclasses[110X[8X[108X72[33X[0;6YA list of lists of indices [10Xi[110X of groups which are known to be equal,73i.e. if [10Xi[110X and [10Xj[110X lie in the same list, then [10Xgrps[i] = grps[j][110X.[133X7475[8X[10Xsamegroups[110X[8X[108X76[33X[0;6YA list of lists, where [10Xsamegroups[i][110X is a list of indices of groups77which are known to be equal to [10Xgrps[i][110X.[133X7879[8X[10Xconjugacyclasses[110X[8X[108X80[33X[0;6YA list of lists of indices of groups which are known to be conjugate81in RCWA(ℤ).[133X8283[8X[10Xsubgroups[110X[8X[108X84[33X[0;6YA list of lists, where [10Xsubgroups[i][110X is a list of indices of groups85which are known to be proper subgroups of [10Xgrps[i][110X.[133X8687[8X[10Xsupergroups[110X[8X[108X88[33X[0;6YA list of lists, where [10Xsupergroups[i][110X is a list of indices of groups89which are known to be proper supergroups of [10Xgrps[i][110X.[133X9091[8X[10Xchains[110X[8X[108X92[33X[0;6YA list of lists, where each list contains the indices of the groups in93a descending chain of subgroups.[133X9495[8X[10Xrespectedpartitions[110X[8X[108X96[33X[0;6YThe list of shortest respected partitions. If [10Xgrps[i][110X is finite, then97[10Xrespectedpartitions[i][110X is a list of pairs (residue, modulus) for the98residue classes in the shortest respected partition [10Xgrps[i][110X. If99[10Xgrps[i][110X is infinite, then [10Xrespectedpartitions[i] = fail[110X.[133X100101[8X[10Xpartitionlengths[110X[8X[108X102[33X[0;6YThe list of lengths of shortest respected partitions. If the group103[10Xgrps[i][110X is finite, then [10Xpartitionlengths[i][110X is the length of the104shortest respected partition of [10Xgrps[i][110X. If [10Xgrps[i][110X is infinite, then105[10Xpartitionlengths[i] = 0[110X.[133X106107[8X[10Xdegrees[110X[8X[108X108[33X[0;6YThe list of permutation degrees, i.e. numbers of moved points, in the109action of the finite groups on their shortest respected partitions. If110there is no respected partition, i.e. if [10Xgrps[i][110X is infinite, then111[10Xdegrees[i] = 0[110X.[133X112113[8X[10Xorbitlengths[110X[8X[108X114[33X[0;6YThe list of lists of orbit lengths in the action of the finite groups115on their shortest respected partitions. If [10Xgrps[i][110X is infinite, then116[10Xorbitlengths[i] = fail[110X.[133X117118[8X[10Xpermgroupgens[110X[8X[108X119[33X[0;6YThe list of lists of generators of the isomorphic permutation groups120induced by the finite groups on their shortest respected partitions.121If [10Xgrps[i][110X is infinite, then [10Xpermgroupgens[i] = fail[110X.[133X122123[8X[10Xstabilize_digitsum_base2_mod2[110X[8X[108X124[33X[0;6YThe list of indices of groups which stabilize the digit sum in base 2125modulo 2.[133X126127[8X[10Xstabilize_digitsum_base2_mod3[110X[8X[108X128[33X[0;6YThe list of indices of groups which stabilize the digit sum in base 2129modulo 3.[133X130131[8X[10Xstabilize_digitsum_base3_mod2[110X[8X[108X132[33X[0;6YThe list of indices of groups which stabilize the digit sum in base 3133modulo 2.[133X134135[8X[10Xfreeproductcandidates[110X[8X[108X136[33X[0;6YA list of indices of groups which may be isomorphic to the free137product of 3 copies of the cyclic group of order 2.[133X138139[8X[10Xfreeproductlikes[110X[8X[108X140[33X[0;6YA list of indices of groups which are not isomorphic to the free141product of 3 copies of the cyclic group of order 2, but where the142shortest relation indicating this is relatively long.[133X143144[8X[10Xabc_torsion[110X[8X[108X145[33X[0;6YA list of pairs (index, order of product of generators) for all146infinite groups for which the product of the generators has finite147order.[133X148149[8X[10Xcyclist[110X[8X[108X150[33X[0;6YA list described in the comments in151[11Xrcwa/data/3ctsgroups6/spheresizecycles.g[111X.[133X152153[8X[10Xfiniteorbits[110X[8X[108X154[33X[0;6YA record described in the comments in155[11Xrcwa/data/3ctsgroups6/finite-orbits.g[111X.[133X156157[8X[10Xintransitivemodulo[110X[8X[108X158[33X[0;6YFor every modulus [10Xm[110X from 1 to 60, [10Xintransitivemodulo[m][110X is the list of159indices of groups none of whose orbits on ℤ has nontrivial160intersection with all residue classes modulo [10Xm[110X.[133X161162[8X[10Xtrsstatus[110X[8X[108X163[33X[0;6YA list of strings which describe what is known about whether the164groups [10Xgrps[i][110X act transitively on the nonnegative integers in their165support, or how the computation has failed.[133X166167[8X[10Xorbitgrowthtype[110X[8X[108X168[33X[0;6YA list of integers and lists of integers which encode what has been169observed heuristically on the growth of the orbits of the groups170[10Xgrps[i][110X on ℤ.[133X171172[33X[0;0YNote that the database contains an entry for every unordered 3-tuple of173distinct class transpositions in [10Xcts[110X, which means that it contains multiple174copies of equal groups -- cf. the components [10Xequalityclasses[110X and [10Xsamegroups[110X175described above.[133X176177[33X[0;0YTo mention an example, the group [10Xgrps[44132][110X might be called the [21XCollatz178group[121X -- its action on the set of positive integers which are not multiples179of 6 is transitive if and only if the Collatz conjecture holds.[133X180181[4X[32X Example [32X[104X182[4X[28X[128X[104X183[4X[25Xgap>[125X [27XLoadDatabaseOfGroupsGeneratedBy3ClassTranspositions();[127X[104X184[4X[28X"3CTsGroups6"[128X[104X185[4X[25Xgap>[125X [27XAssignGlobals(3CTsGroups6); # for convenience[127X[104X186[4X[28XThe following global variables have been assigned:[128X[104X187[4X[28X[ "3CTsGroupsWithGivenOrbit", "Id3CTsGroup", [128X[104X188[4X[28X "ProbablyFixesDigitSumsModulo", "ProbablyStabilizesDigitSumsModulo", [128X[104X189[4X[28X "TriangleTypes", "abc_torsion", "chains", "conjugacyclasses", "cts", [128X[104X190[4X[28X "cyclist", "degrees", "epifromfpgroupto_ct23z", [128X[104X191[4X[28X "epifromfpgrouptocollatzgroup_c", "epifromfpgrouptocollatzgroup_t", [128X[104X192[4X[28X "equalityclasses", "finiteorbits", "freeproductcandidates", [128X[104X193[4X[28X "freeproductlikes", "groups", "grps", "intransitivemodulo", [128X[104X194[4X[28X "minwordlengthcoprimemultdiv", "minwordlengthnonbalanced", "mods", [128X[104X195[4X[28X "orbitgrowthtype", "orbitlengths", "partitionlengths", "permgroupgens",[128X[104X196[4X[28X "redundant_generator", "refinementseqlngs", "respectedpartitions", [128X[104X197[4X[28X "samegroups", "shortresidueclassorbitlengths", "sizes", "sizespos", [128X[104X198[4X[28X "sizesset", "spheresizebound_12", "spheresizebound_24", [128X[104X199[4X[28X "spheresizebound_4", "spheresizebound_6", [128X[104X200[4X[28X "stabilize_digitsum_base2_mod2", "stabilize_digitsum_base2_mod3", [128X[104X201[4X[28X "stabilize_digitsum_base3_mod2", "subgroups", "supergroups", [128X[104X202[4X[28X "trsstatus", "trsstatuspos", "trsstatusset" ][128X[104X203[4X[25Xgap>[125X [27Xgrps[44132]; # the "3n+1 group"[127X[104X204[4X[28X<(2(3),4(6)),(1(3),2(6)),(1(2),4(6))>[128X[104X205[4X[25Xgap>[125X [27Xtrsstatus[44132]; # deciding this would solve the 3n+1 problem[127X[104X206[4X[28X"exceeded memory bound"[128X[104X207[4X[25Xgap>[125X [27XLength(Set(sizes));[127X[104X208[4X[28X1066[128X[104X209[4X[25Xgap>[125X [27XMaximum(Filtered(sizes,IsInt)); # order of largest finite group stored[127X[104X210[4X[28X7165033589793852697531456980706732548435609645091822296777976465116824959\[128X[104X211[4X[28X2135499174617837911754921014138184155204934961004073853323458315539461543\[128X[104X212[4X[28X4480515260818409913846161473536000000000000000000000000000000000000000000\[128X[104X213[4X[28X000000[128X[104X214[4X[25Xgap>[125X [27XPrintFactorsInt(last); [127X[104X215[4X[28X2^200*3^103*5^48*7^28*11^16*13^13*17^8*19^6*23^6*29[128X[104X216[4X[25Xgap>[125X [27XPositions(sizes,last); [127X[104X217[4X[28X[ 33814, 36548 ][128X[104X218[4X[25Xgap>[125X [27Xgrps{last};[127X[104X219[4X[28X[ <(1(5),4(5)),(0(3),1(6)),(3(4),0(6))>, [128X[104X220[4X[28X <(0(5),3(5)),(2(3),4(6)),(0(4),5(6))> ][128X[104X221[4X[25Xgap>[125X [27Xsamegroups[1]; [127X[104X222[4X[28X[ 1, 2, 68 ][128X[104X223[4X[25Xgap>[125X [27Xgrps[1] = grps[68];[127X[104X224[4X[28Xtrue[128X[104X225[4X[25Xgap>[125X [27XMaximum(mods);[127X[104X226[4X[28X77760[128X[104X227[4X[25Xgap>[125X [27XPositions(mods,last);[127X[104X228[4X[28X[ 26311, 26313, 26452, 26453, 26455, 26456, 26457, 26459, 26461, 26462, [128X[104X229[4X[28X 27781, 27784, 27785, 27786, 27788, 27789, 27790, 27791, 27829, 27832, [128X[104X230[4X[28X 30523, 30524, 30525, 30526, 30529, 30530, 30532, 30534, 32924, 32927, [128X[104X231[4X[28X 32931, 32933 ][128X[104X232[4X[25Xgap>[125X [27XSet(sizes{last}); [127X[104X233[4X[28X[ 45509262704640000 ][128X[104X234[4X[25Xgap>[125X [27XCollected(mods);[127X[104X235[4X[28X[ [ 0, 30446 ], [ 3, 1 ], [ 4, 37 ], [ 5, 120 ], [ 6, 1450 ], [ 8, 18 ], [128X[104X236[4X[28X [ 10, 45 ], [ 12, 3143 ], [ 15, 165 ], [ 18, 484 ], [ 20, 528 ], [128X[104X237[4X[28X [ 24, 1339 ], [ 30, 2751 ], [ 36, 2064 ], [ 40, 26 ], [ 48, 515 ], [128X[104X238[4X[28X [ 60, 2322 ], [ 72, 2054 ], [ 80, 44 ], [ 90, 108 ], [ 96, 108 ], [128X[104X239[4X[28X [ 108, 114 ], [ 120, 782 ], [ 144, 310 ], [ 160, 26 ], [ 180, 206 ], [128X[104X240[4X[28X [ 192, 6 ], [ 216, 72 ], [ 240, 304 ], [ 270, 228 ], [ 288, 14 ], [128X[104X241[4X[28X [ 360, 84 ], [ 432, 36 ], [ 480, 218 ], [ 540, 18 ], [ 720, 120 ], [128X[104X242[4X[28X [ 810, 112 ], [ 864, 8 ], [ 960, 94 ], [ 1080, 488 ], [ 1620, 44 ], [128X[104X243[4X[28X [ 1920, 38 ], [ 2160, 506 ], [ 3240, 34 ], [ 3840, 12 ], [128X[104X244[4X[28X [ 4320, 218 ], [ 4860, 16 ], [ 6480, 282 ], [ 7680, 10 ], [128X[104X245[4X[28X [ 8640, 16 ], [ 12960, 120 ], [ 14580, 2 ], [ 25920, 34 ], [128X[104X246[4X[28X [ 30720, 2 ], [ 38880, 12 ], [ 51840, 8 ], [ 77760, 32 ] ][128X[104X247[4X[25Xgap>[125X [27XCollected(trsstatus);[127X[104X248[4X[28X[ [ "> 1 orbit (mod m)", 593 ], [128X[104X249[4X[28X [ "Mod(U DecreasingOn) exceeded <maxmod>", 23 ], [128X[104X250[4X[28X [ "U DecreasingOn stable and exceeded memory bound", 11 ], [128X[104X251[4X[28X [ "U DecreasingOn stable for <maxeq> steps", 5753 ], [128X[104X252[4X[28X [ "exceeded memory bound", 497 ], [ "finite", 21948 ], [128X[104X253[4X[28X [ "intransitive, but finitely many orbits", 8 ], [128X[104X254[4X[28X [ "seemingly only finite orbits (long)", 1227 ], [128X[104X255[4X[28X [ "seemingly only finite orbits (medium)", 2501 ], [128X[104X256[4X[28X [ "seemingly only finite orbits (short)", 4816 ], [128X[104X257[4X[28X [ "seemingly only finite orbits (very long)", 230 ], [128X[104X258[4X[28X [ "seemingly only finite orbits (very long, very unclear)", 76 ], [128X[104X259[4X[28X [ "seemingly only finite orbits (very short)", 208 ], [128X[104X260[4X[28X [ "there are infinite orbits which have exponential sphere size growth"[128X[104X261[4X[28X , 2934 ], [128X[104X262[4X[28X [ "there are infinite orbits which have linear sphere size growth", [128X[104X263[4X[28X 10881 ],[128X[104X264[4X[28X [ "there are infinite orbits which have unclear sphere size growth", [128X[104X265[4X[28X 86 ], [ "transitive", 562 ], [128X[104X266[4X[28X [ "transitive up to one finite orbit", 40 ] ][128X[104X267[4X[28X[128X[104X268[4X[32X[104X269270[1X6.2-2 LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions[101X271272[29X[2XLoadDatabaseOfGroupsGeneratedBy3ClassTranspositions[102X( [3Xmax_m[103X ) [32X function273[6XReturns:[106X [33X[0;10Ythe name of the variable to which the record containing the274database of all groups generated by 3 class transpositions which275interchange residue classes with moduli less than or equal to276[3Xmax_m[103X got bound, where [3Xmax_m[103X is either 6 or 9.[133X277278[33X[0;0YIf [3Xmax_m[103X is 6, this is equivalent to the call of the function without279argument described above. If [3Xmax_m[103X is 9, the function returns a record with280at least the following components (in the sequel, the indices [10Xi > j > k[110X are281always integers in the range [10X[1..264][110X):[133X282283[8X[10Xcts[110X[8X[108X284[33X[0;6YThe list of all 264 class transpositions which interchange residue285classes with moduli [22X≤ 9[122X.[133X286287[8X[10Xmods[110X[8X[108X288[33X[0;6YThe list of moduli of the groups, i.e. [10XMod(Group(cts{[i,j,k]})) =289mods[i][j][k][110X.[133X290291[8X[10Xpartlengths[110X[8X[108X292[33X[0;6YThe list of lengths of shortest respected partitions of the groups in293the database, i.e. [10XLength(RespectedPartition(Group(cts{[i,j,k]})))[110X [10X=[110X294[10Xpartlengths[i][j][k][110X.[133X295296[8X[10Xsizes[110X[8X[108X297[33X[0;6YThe list of orders of the groups, i.e. [10XSize(Group(cts{[i,j,k]}))[110X [10X=[110X298[10Xsizes[i][j][k][110X.[133X299300[8X[10XAll3CTs9Indices[110X[8X[108X301[33X[0;6YA selector function which takes as argument a function [3Xfunc[103X of three302arguments [3Xi[103X, [3Xj[103X and [3Xk[103X. It returns a list of all triples of indices303[10X[[3Xi[103X[10X,[3Xj[103X[10X,[3Xk[103X[10X][110X where [22X264 ≥ i > j > k ≥ 1[122X for which [3Xfunc[103X returns [10Xtrue[110X.[133X304305[8X[10XAll3CTs9Groups[110X[8X[108X306[33X[0;6YA selector function which takes as argument a function [3Xfunc[103X of three307arguments [3Xi[103X, [3Xj[103X and [3Xk[103X. It returns a list of all groups308[10XGroup(cts{[[3Xi[103X[10X,[3Xj[103X[10X,[3Xk[103X[10X]})[110X from the database for which [10X[3Xfunc[103X[10X([3Xi[103X[10X,[3Xj[103X[10X,[3Xk[103X[10X)[110X returns309[10Xtrue[110X.[133X310311[4X[32X Example [32X[104X312[4X[28X[128X[104X313[4X[25Xgap>[125X [27XLoadDatabaseOfGroupsGeneratedBy3ClassTranspositions(9);[127X[104X314[4X[28X"3CTsGroups9"[128X[104X315[4X[25Xgap>[125X [27XAssignGlobals(3CTsGroups9);[127X[104X316[4X[28XThe following global variables have been assigned:[128X[104X317[4X[28X[ "All3CTs9Groups", "All3CTs9Indices", "cts", "mods", "partlengths", [128X[104X318[4X[28X "sizes" ][128X[104X319[4X[25Xgap>[125X [27XPrintFactorsInt(Maximum(Filtered(Flat(sizes),n->n<>infinity)));[127X[104X320[4X[28X2^1283*3^673*5^305*7^193*11^98*13^84*17^50*19^41*23^25*29^13*31^4[128X[104X321[4X[28X[128X[104X322[4X[32X[104X323324[1X6.2-3 LoadDatabaseOfGroupsGeneratedBy4ClassTranspositions[101X325326[29X[2XLoadDatabaseOfGroupsGeneratedBy4ClassTranspositions[102X( ) [32X function327[6XReturns:[106X [33X[0;10Ythe name of the variable to which the record containing the328database of all groups generated by 4 class transpositions which329interchange residue classes with moduli [22X≤ 6[122X for which all330subgroups generated by 3 out of the 4 generators are finite got331bound.[133X332333[33X[0;0YThe record has at least the following components (the index [10Xi[110X is always an334integer in the range [10X[1..140947][110X, and the term [21Xindices[121X always refers to list335indices in that range):[133X336337[8X[10Xcts[110X[8X[108X338[33X[0;6YThe list of all 69 class transpositions which interchange residue339classes with moduli [22X≤ 6[122X.[133X340341[8X[10Xgrps4_3finite[110X[8X[108X342[33X[0;6YThe list of all 140947 groups in the database.[133X343344[8X[10Xgrps4_3finitepos[110X[8X[108X345[33X[0;6YThe list obtained from [10Xgrps4_3finite[110X by replacing every group by the346list of positions of its generators in the list [10Xcts[110X.[133X347348[8X[10Xsizes4[110X[8X[108X349[33X[0;6YThe list of group orders -- it is [10XSize(grps4_3finite[i]) = sizes4[i][110X.[133X350351[8X[10Xmods4[110X[8X[108X352[33X[0;6YThe list of moduli of the groups -- it is [10XMod(grps4_3finite[i]) =353mods4[i][110X.[133X354355[8X[10Xconjugacyclasses4cts[110X[8X[108X356[33X[0;6YA list of lists of indices of groups which are known to be conjugate357in RCWA(ℤ).[133X358359[8X[10Xgrps4_3finite_reps[110X[8X[108X360[33X[0;6YTentative conjugacy class representatives from the list [10Xgrps4_3finite[110X361-- [13Xtentative[113X in the sense that likely some of the groups in the list362are still conjugate.[133X363364[33X[0;0YNote that the database contains an entry for every suitable unordered3654-tuple of distinct class transpositions in [10Xcts[110X, which means that it366contains multiple copies of equal groups.[133X367368[4X[32X Example [32X[104X369[4X[28X[128X[104X370[4X[25Xgap>[125X [27XLoadDatabaseOfGroupsGeneratedBy4ClassTranspositions(); [127X[104X371[4X[28X"4CTsGroups6"[128X[104X372[4X[25Xgap>[125X [27XAssignGlobals(4CTsGroups6);[127X[104X373[4X[28XThe following global variables have been assigned:[128X[104X374[4X[28X[ "conjugacyclasses4cts", "cts", "grps4_3finite", "grps4_3finite_reps", [128X[104X375[4X[28X "grps4_3finitepos", "mods4", "sizes4", "sizes4pos", "sizes4set" ][128X[104X376[4X[25Xgap>[125X [27XLength(grps4_3finite);[127X[104X377[4X[28X140947[128X[104X378[4X[25Xgap>[125X [27XLength(sizes4);[127X[104X379[4X[28X140947[128X[104X380[4X[25Xgap>[125X [27XSize(grps4_3finite[1]);[127X[104X381[4X[28X518400[128X[104X382[4X[25Xgap>[125X [27Xsizes4[1];[127X[104X383[4X[28X518400[128X[104X384[4X[25Xgap>[125X [27XMaximum(Filtered(sizes4,IsInt));[127X[104X385[4X[28X<integer 420...000 (3852 digits)>[128X[104X386[4X[25Xgap>[125X [27XModulus(grps4_3finite[1]);[127X[104X387[4X[28X12[128X[104X388[4X[25Xgap>[125X [27Xmods4[1];[127X[104X389[4X[28X12[128X[104X390[4X[25Xgap>[125X [27XLength(Set(sizes4));[127X[104X391[4X[28X7339[128X[104X392[4X[25Xgap>[125X [27XLength(Set(mods4));[127X[104X393[4X[28X91[128X[104X394[4X[25Xgap>[125X [27Xconjugacyclasses4cts{[1..4]};[127X[104X395[4X[28X[ [ 1, 23, 563, 867 ], [ 2, 859 ], [ 3, 622 ], [ 4, 16, 868, 873 ] ][128X[104X396[4X[25Xgap>[125X [27Xgrps4_3finite[1] = grps4_3finite[23];[127X[104X397[4X[28Xtrue[128X[104X398[4X[25Xgap>[125X [27Xgrps4_3finite[4] = grps4_3finite[16];[127X[104X399[4X[28Xfalse[128X[104X400[4X[28X[128X[104X401[4X[32X[104X402403404[1X6.3 [33X[0;0YDatabases of rcwa mappings[133X[101X405406[1X6.3-1 LoadDatabaseOfProductsOf2ClassTranspositions[101X407408[29X[2XLoadDatabaseOfProductsOf2ClassTranspositions[102X( ) [32X function409[6XReturns:[106X [33X[0;10Ythe name of the variable to which the record containing the410database of products of 2 class transpositions got bound.[133X411412[33X[0;0YThere are 69 class transpositions which interchange residue classes with413moduli [22X≤ 6[122X, thus there is a total of [22X(69 ⋅ 68)/2 = 2346[122X unordered pairs of414distinct such class transpositions. Looking at intersection- and subset415relations between the 4 involved residue classes, we can distinguish 17416different [21Xintersection types[121X (or 18, together with the trivial case of equal417class transpositions). The intersection type does not fully determine the418cycle structure of the product. -- In total, we can distinguish 88 different419cycle types of products of 2 class transpositions which interchange residue420classes with moduli [22X≤ 6[122X.[133X421422[33X[0;0YThe components of the database record are a list [10XCTPairs[110X of all 2346 pairs423of distinct class transpositions which interchange residue classes with424moduli [22X≤ 6[122X, functions [10XCTPairsIntersectionTypes[110X, [10XCTPairIntersectionType[110X and425[10XCTPairProductType[110X, as well as data lists [10XOrdersMatrix[110X,426[10XCTPairsProductClassification[110X, [10XCTPairsProductType[110X, [10XCTProds12[110X and [10XCTProds32[110X.427-- For the description of these components, see the file428[11Xpkg/rcwa/data/ctproducts/ctprodclass.g[111X.[133X429430[4X[32X Example [32X[104X431[4X[28X[128X[104X432[4X[25Xgap>[125X [27XLoadDatabaseOfProductsOf2ClassTranspositions();[127X[104X433[4X[28X"CTProducts"[128X[104X434[4X[25Xgap>[125X [27XSet(RecNames(CTProducts));[127X[104X435[4X[28X[ "CTPairIntersectionType", "CTPairProductType", "CTPairs", [128X[104X436[4X[28X "CTPairsIntersectionTypes", "CTPairsProductClassification", [128X[104X437[4X[28X "CTPairsProductType", "CTProds12", "CTProds32", "OrdersMatrix" ][128X[104X438[4X[25Xgap>[125X [27XLength(CTProducts.CTPairs);[127X[104X439[4X[28X2346[128X[104X440[4X[25Xgap>[125X [27XCollected(List(CTProducts.CTPairsProductType,l->l[2])); # order stats[127X[104X441[4X[28X[ [ 2, 165 ], [ 3, 255 ], [ 4, 173 ], [ 6, 693 ], [ 10, 2 ], [128X[104X442[4X[28X [ 12, 345 ], [ 15, 4 ], [ 20, 10 ], [ 30, 120 ], [ 60, 44 ], [128X[104X443[4X[28X [ infinity, 535 ] ][128X[104X444[4X[28X[128X[104X445[4X[32X[104X446447[1X6.3-2 LoadDatabaseOfNonbalancedProductsOfClassTranspositions[101X448449[29X[2XLoadDatabaseOfNonbalancedProductsOfClassTranspositions[102X( ) [32X function450[6XReturns:[106X [33X[0;10Ythe name of the variable to which the record containing the451database of non-balanced products of class transpositions got452bound.[133X453454[33X[0;0YThis database contains a list of the 24 pairs of class transpositions which455interchange residue classes with moduli [22X≤ 6[122X and whose product is not456balanced, as well as a list of all 36 essentially distinct triples of such457class transpositions whose product has coprime multiplier and divisor.[133X458459[4X[32X Example [32X[104X460[4X[28X[128X[104X461[4X[25Xgap>[125X [27XLoadDatabaseOfNonbalancedProductsOfClassTranspositions();[127X[104X462[4X[28X"CTProductsNB"[128X[104X463[4X[25Xgap>[125X [27XSet(RecNames(CTProductsNB));[127X[104X464[4X[28X[ "PairsOfCTsWhoseProductIsNotBalanced", [128X[104X465[4X[28X "TriplesOfCTsWhoseProductHasCoprimeMultiplierAndDivisor" ][128X[104X466[4X[25Xgap>[125X [27XCTProductsNB.PairsOfCTsWhoseProductIsNotBalanced;[127X[104X467[4X[28X[ [ ( 1(2), 2(4) ), ( 2(4), 3(6) ) ], [ ( 1(2), 2(4) ), ( 2(4), 5(6) ) ], [128X[104X468[4X[28X [ ( 1(2), 2(4) ), ( 2(4), 1(6) ) ], [ ( 1(2), 0(4) ), ( 0(4), 1(6) ) ], [128X[104X469[4X[28X [ ( 1(2), 0(4) ), ( 0(4), 3(6) ) ], [ ( 1(2), 0(4) ), ( 0(4), 5(6) ) ], [128X[104X470[4X[28X [ ( 0(2), 1(4) ), ( 1(4), 2(6) ) ], [ ( 0(2), 1(4) ), ( 1(4), 4(6) ) ], [128X[104X471[4X[28X [ ( 0(2), 1(4) ), ( 1(4), 0(6) ) ], [ ( 0(2), 3(4) ), ( 3(4), 4(6) ) ], [128X[104X472[4X[28X [ ( 0(2), 3(4) ), ( 3(4), 2(6) ) ], [ ( 0(2), 3(4) ), ( 3(4), 0(6) ) ], [128X[104X473[4X[28X [ ( 1(2), 2(6) ), ( 3(4), 2(6) ) ], [ ( 1(2), 2(6) ), ( 1(4), 2(6) ) ], [128X[104X474[4X[28X [ ( 1(2), 4(6) ), ( 3(4), 4(6) ) ], [ ( 1(2), 4(6) ), ( 1(4), 4(6) ) ], [128X[104X475[4X[28X [ ( 1(2), 0(6) ), ( 1(4), 0(6) ) ], [ ( 1(2), 0(6) ), ( 3(4), 0(6) ) ], [128X[104X476[4X[28X [ ( 0(2), 1(6) ), ( 2(4), 1(6) ) ], [ ( 0(2), 1(6) ), ( 0(4), 1(6) ) ], [128X[104X477[4X[28X [ ( 0(2), 3(6) ), ( 2(4), 3(6) ) ], [ ( 0(2), 3(6) ), ( 0(4), 3(6) ) ], [128X[104X478[4X[28X [ ( 0(2), 5(6) ), ( 2(4), 5(6) ) ], [ ( 0(2), 5(6) ), ( 0(4), 5(6) ) ] [128X[104X479[4X[28X ][128X[104X480[4X[28X[128X[104X481[4X[32X[104X482483484485