GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
############################################################################# ## #W xmod.g XMODALG example files Zekeriya Arvasi #W & Alper Odabas ## version 1.12, 14/11/2015 ## #Y Copyright (C) 2014-2015, Zekeriya Arvasi & Alper Odabas, ## Print("\nXModAlg test file xmod.g (version 10/11/15) :-"); Print("\ntesting constructions of crossed modules of algebras\n\n"); A := GroupRing(GF(5),DihedralGroup(4)); Size(A); SetName(A,"GF5[D4]"); I := AugmentationIdeal(A); Size(I); SetName(I,"Aug"); CM := XModAlgebraByIdeal(A,I); Display(CM); Size(CM); f := Boundary(CM); Print( RepresentationsOfObject(CM), "\n" ); props := [ "CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree", "IsLeftActedOnByDivisionRing", "IsAdditivelyCommutative", "IsPreXModAlgebra", "IsXModAlgebra" ];; known := KnownPropertiesOfObject(CM);; ForAll( props, p -> (p in known) ); Print( KnownAttributesOfObject(CM), "\n" ); e4 := Elements(I)[4]; J := Ideal( I, [e4] ); Size(J); SetName( J, "<e4>" ); PM := XModAlgebraByIdeal( A, J ); Display( PM ); IsSubXModAlgebra( CM, PM ); G := SmallGroup(4,2); F := GaloisField(4); R := GroupRing( F, G ); Size(R); SetName( R, "GF(2^2)[k4]" ); e5 := Elements(R)[5]; S := Subalgebra( R, [e5] ); SetName( S, "<e5>" ); RS := Cartesian( R, S );; SetName( RS, "GF(2^2)[k4] x <e5>" ); act := AlgebraAction( R, RS, S );; bdy := AlgebraHomomorphismByFunction( S, R, r->r ); IsAlgebraAction( act ); IsAlgebraHomomorphism( bdy ); XM := PreXModAlgebraByBoundaryAndAction( bdy, act ); IsXModAlgebra( XM ); Display( XM ); A:=GroupRing(GF(2),CyclicGroup(4)); B:=AugmentationIdeal(A); X1:=XModAlgebra(A,B); C:=GroupRing(GF(2),SmallGroup(4,2)); D:=AugmentationIdeal(C); X2:=XModAlgebra(C,D); B = D; all_f := AllHomsOfAlgebras(A,C);; all_g := AllHomsOfAlgebras(B,D);; mor := XModAlgebraMorphism(X1,X2,all_g[1],all_f[2]); Display(mor); X3 := Kernel(mor); IsTotal(mor); IsSingleValued(mor); IsXModAlgebra(X3); Size(X3); IsSubXModAlgebra(X1,X3); ############################################################################# ## #E alg2obj.g . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here