Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W col20.z GAP library of groups Hans Ulrich Besche ## Bettina Eick, Eamonn O'Brien ## SMALL_GROUP_LIB[ 812 ] := [ 3119380439765099, 3842298867819, 1279920952245, 6908714389611, 5639566112952743, 315323204, 4552305128478150763, 3841767186599, 4877910183, 5606546900815979, 4551508155251167655, 37061789900967, 8516673703, 1593189113 , 6945229254823, 167 ]; PROPERTIES_SMALL_GROUPS[ 812 ] := rec( isNilpotent := [ 6, 16 ], isAbelian := [ 6, 16 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 8, -9, 12, -16 ], [ 1, -7, 10, -11 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13 ], pos := [ 1, 2, 3, 4, 5 , 6 ] ) ); SMALL_GROUP_LIB[ 819 ] := [ 8770190849, 17529076391, 14356718258327, 14582793078935, 10640149, 113060636567, 21899159, 11282393, 17529386903, 17805424535, 1943 ]; PROPERTIES_SMALL_GROUPS[ 819 ] := rec( isNilpotent := [ 5, 11 ], isAbelian := [ 5, 11 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 6, -11 ], [ 1, -5 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11 ], pos := [ 1, 2, 3, 4, 5 ] ) ); SMALL_GROUP_LIB[ 820 ] := [ 7973924129284839, 9727183364839, 3231009342403, 41970649604839, 34504265034240159, 1313286360, 28192838859901444839, 9724968960159, 12451840159, 34405169973764839, 2645066467902403, 23200514417918568960159, 23200514461984975360159, 88925215188871680159, 28192056626833920159, 132250583040159, 51200000159, 4014081563, 42078167040159, 159 ]; PROPERTIES_SMALL_GROUPS[ 820 ] := rec( isNilpotent := [ 6, 20 ], isAbelian := [ 6, 20 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 8, -9, 16, -20 ], [ 1, -7, 10, -15 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13 ], pos := [ 1, 2, 3, 4, 5 , 6 ] ) ); SMALL_GROUP_LIB[ 824 ] := [ 3805265025146215829, 45777897231876, 3135533679660783191573, 4618029899601029, 3805259317589679365, 4618029791357813, 4618030549060325, 55528780110, 56286482622, 37674930588453870, 5600936968805, 101 ]; PROPERTIES_SMALL_GROUPS[ 824 ] := rec( isNilpotent := [ 2, 8, -10, 12 ], isAbelian := [ 2, 8, 12 ], lgLength := rec( lgLength := [ 2, 3, 4 ], pos := [ [ 11, -12 ], [ 3, -10 ], [ 1, -2 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 11, 14 ], pos := [ 1, 2, 7, 10 ] ) ); SMALL_GROUP_LIB[ 825 ] := [ 12729621339, 5141393, 16641339, 92943841933, 1339 ]; PROPERTIES_SMALL_GROUPS[ 825 ] := rec( isNilpotent := [ 2, 5 ], isSupersolvable := [ 1, -3, 5 ], isAbelian := [ 2, 5 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 3, -5 ], [ 1, -2 ] ] ), frattFacs := rec( frattFacs := [ 3, 5 ], pos := [ 1, 2 ] ) ); SMALL_GROUP_LIB[ 828 ] := [ 48221382224765366255, 1217277163478565859, 42711404488851263072403, 70167251139437, 52046372355693103411, 173736440722631116, 1470135144824719, 58238384441117387, 51583821826503050547, 84457722163, 1470135129374449, 70167900497069, 1217277163798091043, 58099232053433583, 1007905508280880175471, 84442271914, 39831787589212835255535, 758549860372286938389920111, 1609796737331727, 1336266613662667279, 209829508454347, 3995792462032792079, 1106428758120213265935, 140082149747804 , 1773838905871, 85096772531, 1470135454042639, 70168225165259, 1217277163957843471, 527 ]; PROPERTIES_SMALL_GROUPS[ 828 ] := rec( isNilpotent := [ 4, 10, 16, 30 ], isSupersolvable := [ 1, -5, 7, -16, 19, -23, 25, -30 ], isAbelian := [ 4, 10, 16, 30 ], lgLength := rec( lgLength := [ 3, 4, 5 ], pos := [ [ 20, -25, 28, -30 ], [ 5, -11, 14, -19, 26, -27 ], [ 1, -4, 12, -13 ] ] ), frattFacs := rec( frattFacs := [ 5, 9, 13, 17, 22, 26, 30, 34, 38, 42, 23, 27 , 31, 35, 39, 43 ], pos := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ] ) ); SMALL_GROUP_LIB[ 836 ] := [ 404992479645, 764887156613, 646283832073667, 53855910, 7684481705651, 917070515, 487088955, 773058380723, 179 ]; PROPERTIES_SMALL_GROUPS[ 836 ] := rec( isNilpotent := [ 4, 9 ], isAbelian := [ 4, 9 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 5, -9 ], [ 1, -4 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 837 ] := [ 6983758753497959, 348368903131, 8343779247959, 6983733046527959, 6983745902847959, 8343778437959, 6983733045717959, 8343784107959, 415558771, 421228771, 347542678771, 1684827959, 27959 ]; PROPERTIES_SMALL_GROUPS[ 837 ] := rec( isNilpotent := [ 2, 9, -11, 13 ], isAbelian := [ 2, 9, 13 ], lgLength := rec( lgLength := [ 2, 3, 4 ], pos := [ [ 12, -13 ], [ 3, -11 ], [ 1, -2 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 11, 14 ], pos := [ 1, 2, 8, 11 ] ) ); SMALL_GROUP_LIB[ 840 ] := [ 87162325125931134941, 29722833292934370407, 24502751583197796914279, 34807967309000669, 172886441053056989, 103764818744504715, 145708751538570548327, 34643196435954601, 145224900182410681979, 87162654666590152857, 122395352740960141312763, 41192629478028, [ ( 1, 7,12, 6,21)( 2,10,14, 3,19)( 4,13,17, 5,16)( 8,11,15, 9,18) (25,26,27,28,29,30,31), ( 1,16,23)( 2,18,20)( 3,10,17)( 4,21,22) ( 5,13,15)( 6, 7,14)( 8,19,24)( 9,11,12)(25,26,27,28,29,30,31) ], 511527139023470832243815, 429682738060407880628982887, 87714557863008529775, 87714557863008483119, 73680228603893625562031, 87714557863009929455, 73680228603893627008367, 73680228603893626961711, 61891392027269611894959023, 73216352818122732170249, 103764675034738121, 87162324786151208393, 103764675034691465, 103764675036137801, 24967178529131503496111, 35384324341083503, 29722831583328499055, 35384324341036847, 35384324342483183 , 20582311328449195998423983, 29169942359965969775, 24502751581488191042927, 29169942359965923119, 29169942359967369455, 87024164278419779979, 511643366579046147576935, 73129294670084681656473, 429780224952489110334079739, 725119175455010159, 725119175454963503, 609100108914035434415, 725119175456409839, 609100108914036880751, 609100108914036834095, 511644091489321554111407, 241843831183634195, 241843831183587539, 203148819041166206291, 241843831185033875, 203148819041167652627, 203148819041167605971, 170645007995426489068883, 610134468050945305787, 610134468050945259131, 512512953167670281544443, 610134468050946705467, 512512953167670282990779, 512512953167670282944123, 430510880660847912684317435, 172722111030358209, 172722111030311553, 145086573818879846145, 172722111031757889, 145086573818881292481, 145086573818881245825, 121872722008412412014337, 609100112338606689467, 609100112338606642811, 511644094369381001052923, 609100112338608089147, 511644094369381002499259, 511644094369381002452603, 429781039270284992228657915, 1015050250872522419387, 1015050250872522372731, 852642210737945371403003, 1015050250872523819067, 852642210737945372849339, 852642210737945372802683, 716219457019879138479942395, 512512950291035410336955, 512512950291035410290299, 430510878244474615897244411, 512512950291035411736635, 430510878244474615898690747, 430510878244474615898644091, 361629137725358682224861809403, 41440298233289, 41440299632969, 29238404900181306377, 24473270428384358475720, 20509443450069209836923054, 145224323143142042633, 205816400309705, 172886098597688777, 205816400263049, 205816401709385, 87162242495680965711, 123528987667983, 103764574133859855, 123528987621327, 123528989067663, 122395349855763846376367, 173462795409698159, 145708749826289235311, 173462795409651503, 173462795411097839, 29100161848219889149, 41241575026621, 34643049670031293, 41241574979965, 41241576426301, 121988915291231618837843, 172886783521206035, 145224899155042432787, 172886783521159379, 172886783522605715, 73216629304217541783297, 103765063367930049, 87162653932756072641, 103765063367883393, 103765063369329729, 102812096298096668045658875, 145708753250859044027, 122395352735823294764219, 145708753250858997371, 145708753250860443707, 48922408866, 48923855202, 34560762233547810, [ ( 1, 3, 7, 4)( 5, 6)( 8,10,12, 9,11), ( 1, 5, 7, 3, 4, 6, 2)( 8,12,11,10, 9) ], [ ( 2, 5, 3, 4)( 6, 9,12, 8,11, 7,10), (1,5,2)(3,4) ], [ ( 2, 7)( 3, 6)( 4, 5)( 8,12,11, 9), ( 1, 5)( 2, 4)( 6, 7)( 8,12, 9)(10,11) ], [ ( 1, 7)( 2, 6)( 3, 5)(10,12,11), ( 2, 3)( 4, 5)( 6, 7)( 8,11,12, 9,10) ], [ ( 1, 2)( 3, 6, 9, 5, 8, 4, 7)(10,13)(11,12), (10,13,12,11,14) ], 511585130748045492874607, 68806843723387209770686194120, 608960879794952009519, 511527069119538320865071, 104422103097311291, 609167915313683098991, 511702083219027220753595, 87162078618188855937, 511701048863314882137275, 512512949428046290843259, 429829749901109824103320763, 726350552736104507, 138202057339318728, 48801178784356189991820, 40992990179502644930511036, 40992990179173495279946388, 51579521340845819590125437004, 41351650246715, 42134396092475, 34726132081410107, 725199897447532445, 29480617456624633757, 517999898881329483, 2033378335751559562535, 32622478852031595815, 26390421167410785928487, 103600219457664975, 609099245929508337455, 87058684141568752257, 511643124943428756870779, 863235289940027, 287908314513527, 726350551398383675, 205620901871805, 725119175460888635, 1208393149816553531, 610134464626385854523, 61152952379, 82336908314700, 35095973539481501, 244635697211, 146790973509, 206501325226043, 48946249867, 205816412160119, 123528999518397, 173462795415576635, 59 ]; PROPERTIES_SMALL_GROUPS[ 840 ] := rec( isNilpotent := [ 12, 131, -133, 186 ], isSupersolvable := [ 1, -12, 14, -93, 96, -133, 139, 141, -150, 156, -158, 165, -176, 179, -186 ], isSolvable := [ 1, -12, 14, -133, 139, -186 ], isAbelian := [ 12, 131, 186 ], lgLength := rec( lgLength := [ 4, 5, 6, false ], pos := [ [ 140, 143, 150, -151, 156, -158, 169, -176, 179, -186 ], [ 16, -37, 42, -133, 139, 141, -142, 144, -149, 152, -155, 159, -168, 177, -178 ], [ 1, -12, 14, -15, 38, -41 ], [ 13, 134, -138 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37 , 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125 ], pos := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22, 27, 32, 37, 38, 39, 40, 41, 48, 55, 62, 69, 76, 83, 90, 93, 94, 95, 100, 105, 110, 115, 120, 125, 130, 133 ] ) );