Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W sml160.z GAP library of groups Hans Ulrich Besche ## Bettina Eick, Eamonn O'Brien ## SMALL_GROUP_LIB[ 160 ] := [ 8533323658865733635, 17814871508898560, 1353983712335834968067, 53333271796310019, 8532766945204953091, 218453081829053597409283, 218467155574453156372483, 34952493092648596571877379, 53333271796281347, 8532766945204924419, 8620727875427004419, 1365242701010407694339, 14127082107337842691, 2260420548389681410051, 2260508509319903490051, 2260333126950301900803, 361653300312068001017859, 53333271796305923, 8532766945204948995, 53333271796297731, 8620734704425005059, 8532766945204940803, 1365506051182179020803, 1365330115620789465091, 1365330119056763301891, 218452817942784007401475, 53879591636459523, 8534412819622682627, 361667286099994786066435, 2260333126950301622275, 361653300312068000739331, 361653300301824504029187, 58368016502483058955304963, 9338882640397289451835805699, 9338882640397289451835809795, 1494221222463566312312715276291, 53879591636455427, 53333271796396035, 2260333126950301896707, 2260333126950297686019, 14127082107333906435, 361653300301824504016899, 361653300301824499806211, 361653300301824504025091, 440500435955904, 111342732226752, 17703528776773824, 440500436013248, 17704894593634496, 2832782453604290752, 453245191895298814144, 2832782453595869376, 453245191895290392768, 453245191895290450112, 70481452709654720, 2885231219816706240, 2885231907011473600, 461636666700052803776, 111342732284096, 17703528776831168, 72961164338045988339904, 11673786294087358141403328, 1867805807053977302630904000, 1353983705378222829571, 216637304892756358000643, 8462398201295581187, 1353983155622409056259, 216637392303930766700547, 216637392307366740537347, 34661982768072337683836931, 34661982768075773657673731, 8462398201295589379, 1353983155622409064451, 218427485741200160993283, 8462398201295564803, 1354071116552631119875, 1353983155622409039875, 1354071113116657283075, 1354071119988604956675, 34948397718581759949041667, 8462398201295679491, 218427485741200165212163, 34948397718581759953260547, 34948397718581759953252355, 5591743634973071326038388739, 1365171785946662309891, 8462944521135738883, 218427485741200161001475, 8533313200620466179, 1379316449781515448323, 1379315903461675397123, 336746912964611, 53333207372029955, 53333207371898883, 8620727811002753027, 8620724396503752707, 8708685326725832707, 88297677139234819, 14127631820197744643, 14128181554536787971, 551860354170883, 88294262640361475, 88297698614329347, 88297698614321155, 88301134588157955, 14128178140037914627, 14127628405698871299, 28201930390069342211, 2260421087837569708035, 2260420541496254820355, 2260509048767791788035, 88297677139238915, 14127082042909024259, 14127082042908893187, 14127628384223911939, 14127631798722912259, 14128178140037799939, 14127635234696749059, 2260420538081755947011, 333332413988867, 53329792873054211, 53329792872923139, 8533313222095978499, 8533313243570814979, 1365330115556365099011, 1365330118992338931715, 88294262640263171, 14127078628409917443, 2260333126907348172803, 361653300305196049293315, 14162811360523616259, 2266049817692244049923, 362567970830767471624195, 2266049817692243804163, 362567970830767471509507, 362567970830767471501315, 58010875332922803862552579, 362567970830767471255555, 58010875332922803862429699, 9281740053267648626408480771, 333332413976579, 53329792873041923, 333332413960195, 53333207372025859, 8620724375028903939, 53329792873025539, 53329792873017347, 333332414218243, 333332414087171, 53879527212204035, 53879527212195843, 14127082042972471299, 362548303316525620436995, 2260333126885936238595, 551860354158595, 88297677139480579, 28201930390069587971, 551860354416643, 88297677139484675, 88297677139607555, 14127628362749190147, 2260333126885936250883, 58007728530644108942565379, 361653300301760138366979, 4512132944007094628355, 14127078628409765891, 14127628362749075459, 2260420538060281110531, 88294262640250883, 2265926895728224665603, 2260333126885936242691, 362548303316525620432899, 333332414205955, 336746913333251, 695784714288, 1378684637232, 221281010200624, 221281010208816, 220593815441456, 35515604261826608, 695785095216, 111334142648368, 17813471349846064, 111334142656560, 17813467054891056, 2850154737306071088, 17813475644825648, 17812784155090992, 2850045473338060848, 695784771632, 110646947680304, 110646951743536, 17703515909718064, 2832562546984292400, 453210007518915538992, 2832562546984304688, 2832453283016540208, 453192525284034158640, 297004194007519426219710794752, 8462394723177385987, 1353983152144290992131, 1353983152144290983939, 52889989295394819, 8462394723177615363, 8462394723177607171, 8532323662708117507, 53327045171613699, 218427485191402202132483, 1365171782468543475715, 52889989295411203, 8462394723177631747, 52889989295640579, 53329771398467587, 2083061268483, 333310939660291, 333310939643907, 3448927944707, 88294241228832771, 551838879842307, 88294241228341251, 14127078606998388739, 14127078606935449603, 551838883528707, 88294241165934595, 2260332577130059194371, 2083061239811, 2083061760003, 4294971404, 4295098380, 110642652655628, 691489882124, 110642657361932, 2832452595808362508, 103835905182744967235633920, 247948844313084672, 330564307521539, 12886999043 , 3 ]; PROPERTIES_SMALL_GROUPS[ 160 ] := rec( isNilpotent := [ 2, 45, -63, 175, -198, 228, -233, 238 ], isSupersolvable := [ 1, -198, 200, -233, 236, -238 ], isAbelian := [ 2, 46, 59, 175, 190, 228, 238 ], lgLength := rec( lgLength := [ 2, 3, 4, 5, 6 ], pos := [ [ 237, -238 ], [ 38, 45, 81, 89, -119, 143, -151, 155, -161, 165, -168, 173, -189, 199, 203, -205, 207, 209, 212, -236 ], [ 9, -17, 20, -32, 37, 39, -44, 46, -58, 66, -71, 74, -80, 82, -88, 120, -142, 152, -154, 162, -164, 169, -172, 190, -198, 200, -202, 206, 208, 210, -211 ], [ 4, -8, 18, -19, 33, -36, 59, -65, 72, -73 ], [ 1, -3 ] ] ), frattFacs := rec( frattFacs := [ 6, 11, 17, 22, 27, 63, 68, 73, 249, 254, 259 , 264 ], pos := [ 1, 2, 3, 44, 63, 88, 174, 198, 199, 212, 227, 233 ] ) );